Kitabı oku: «Интегральная Фотоника», sayfa 2

Yazı tipi:

Лазерные модули: Lumentum разрабатывает и поставляет лазерные модули различной мощности, работающие в видимом или ближнем ИК-диапазонах. Эти модули используются во многих приложениях, таких как связь на большие расстояния или точное позиционирование.

Фотоприемники: Компания предлагает фотоприемники на базе ИОМ, которые преобразуют оптический сигнал в электрический. Они обладают высокой чувствительностью и широким диапазоном рабочих частот.

Коммутационные матрицы: Lumentum также производит коммутационные матрицы на основе ИОМ для управления и маршрутизации оптического трафика в сетях связи или центрах обработки данных.

NeoPhotonics является ведущим производителем изделий высокой степени интеграции на базе кристалла интегрального оптического модуля (ИОМ).

Интегральные оптические трансиверы: NeoPhotonics предлагает широкий спектр оптических трансиверов, таких как SFP, QSFP и CFP модули. Они обладают высокой плотностью интеграции и поддерживают передачу данных на высоких скоростях.

Когерентные приемо-передатчики: Компания разрабатывает когерентные приемо-передатчики на базе ИОМ для использования в системах связи с более сложными формами модуляции. Эти устройства обеспечивают высокую пропускную способность и дальность передачи.

Модули переменных амплитудных решеточных фильтров (VLC): NeoPhotonics производит ИОМ с VLC фильтрами для многовариантной передачи сигнала по одному каналу связи. Это позволяет повышать эффективность использования оптического спектра.

Интегральные волноводы: Компания предлагает различные типы интегральных волноводов на базе ИОМ, такие как сгибаемые или многослойные структуры. Это позволяет эффективно управлять и направлять оптический сигнал.

Oclaro является ведущим производителем изделий высокой степени интеграции на базе кристалла интегрального оптического модуля (ИОМ).

Интегральные оптические трансиверы: Oclaro предлагает широкий спектр оптических трансиверов, таких как SFP, QSFP и CFP модули. Они обладают высокой плотностью интеграции и поддерживают передачу данных на высоких скоростях.

Когерентные приемо-передатчики: Компания разрабатывает когерентные приемо-передатчики на базе ИОМ для использования в системах связи с более сложными формами модуляции. Эти устройства обеспечивают высокую пропускную способность и дальность передачи.

Модули переменных амплитудных решеточных фильтров (VLC): Oclaro производит ИОМ с VLC фильтрами для многовариантной передачи сигнала по одному каналу связи. Это позволяет повышать эффективность использования оптического спектра.

Интегральные волноводы: Компания предлагает различные типы интегральных волноводов на базе ИОМ, такие как сгибаемые или многослойные структуры. Это позволяет эффективно управлять и направлять оптический сигнал.

Broadcom является ведущим производителем изделий высокой степени интеграции на базе кристалла интегрального оптического модуля (ИОМ).

Оптические трансиверы: Broadcom предлагает широкий спектр оптических трансиверов, таких как SFP, QSFP и CFP модули. Эти устройства обладают высокой плотностью интеграции и обеспечивают передачу данных на высоких скоростях.

Когерентные приемо-передатчики: Компания разрабатывает когерентные приемо-передатчики на базе ИОМ для использования в системах связи с более сложными формами модуляции. Это позволяет достигать высокой пропускной способности и дальности передачи.

100G/400G PAM4 модули: Broadcom выпускает ИОМ с поддержкой PAM4 (четверичное амплитудно-манифестное кодирование) для передачи данных со скоростями 100 Гбит/с и 400 Гбит/с. Это позволяет повышать эффективность использования оптического спектра.

Интегральные волноводы: Компания предлагает различные типы интегральных волноводов на базе ИОМ, такие как сгибаемые или многослойные структуры. Это позволяет эффективно управлять и направлять оптический сигнал.

Современные устройства на базе ОИМ

Оптические трансиверы – это устройства, которые комбинируют функции оптического передатчика и приемника в одном модуле. Они являются ключевыми компонентами для передачи данных по оптоволокнам в сетях связи.

Принцип работы оптических трансиверов основан на преобразовании электрического сигнала в оптический и обратно. Вот основные этапы работы:

Преобразование электрического сигнала: Оптический трансивер получает электрический сигнал от активного элемента (например, микросхемы или процессора) через электрический интерфейс. Это может быть стандартный интерфейс Ethernet, InfiniBand или другой протокол связи.

Модуляция света: Электрический сигнал затем подается на лазерный диод или полупроводниковый лазер внутри оптического трансивера. Лазер генерирует когерентную световую волну, которая представляет собой носитель информации.

Предварительная обработка и усиление: Оптический сигнал проходит через различные оптические компоненты, такие как модуляторы и усилители, чтобы повысить его мощность и качество передачи.

Передача по оптоволокну: Интенсивность световой волны изменяется в соответствии с электрическим сигналом данных. Оптическая волна затем направляется на оптоволокно, где она распространяется на большие расстояния без значительных потерь.

Принятие и декодирование: На другом конце оптоволоконного кабеля приемник трансивера принимает световую волну и превращает ее обратно в электрический сигнал. С помощью фотоприемника (фотодиода или фотодетектора) свет преобразуется в электричество.

Обработка полученного сигнала: Электрический сигнал подвергается дальнейшей обработке для удаления шума, увеличения амплитуды или регенерации данных перед отправкой на активное устройство назначения.

Описанный выше процесс повторяется для каждого бита данных, передаваемого по оптоволокну. Оптические трансиверы позволяют достичь высоких скоростей передачи данных и обеспечить надежную связь в сетях связи.

Когерентные приемо-передатчики – это устройства, используемые в оптической связи для передачи и приема сигналов по оптоволокну с использованием техники когерентного детектирования. Они позволяют достичь высоких скоростей передачи данных и обеспечить более эффективное использование пропускной способности оптоволоконных каналов.

Принцип работы когерентных приемо-передатчиков основан на модуляции и детектировании фазы и амплитуды оптического сигнала. Вот основные этапы работы:

Генерация лазера: Когерентный приемо-передатчик содержит генератор лазера, который создает стабильную когерентную световую волну нужной частоты и мощности.

Модуляция света: Электрический сигнал данных подается на модулятор, который изменяет фазу или амплитуду создаваемой лазером оптической волны в соответствии с передаваемыми данными.

Усиление и расширение спектра: Однопрочностная (single-sideband) моделировка использует так называемый амплитудный манифест. После модуляции сигнала оптическая волна проходит через усилитель для повышения его мощности и затем подвергается расширению спектра, что позволяет более эффективно использовать пропускную способность канала.

Передача по оптоволокну: Измененная оптическая волна направляется на оптоволоконный кабель, где она передается на большие расстояния без значительных потерь.

Принимаемый сигнал: На другом конце оптоволоконного кабеля приемник трансивера получает измененную световую волну и использует фотодиод или фотодетектор для детектирования ее фазы и амплитуды.

Когерентное детектирование: Используя специальные методы обработки сигнала, такие как гомодинная демодуляция или цифровая обработка сигнала (DSP), полученный оптический сигнал превращается в электрический формат данных для последующей обработки.

Обработка и извлечение информации: Электрический сигнал проходит через различные этапы обработки, включая фильтрацию, усиление и декодирование данных. Затем информация извлекается и передается на активное устройство назначения.

Когерентные приемо-передатчики позволяют достичь высокой скорости передачи данных, а также обеспечить более эффективное использование пропускной способности оптоволоконных каналов благодаря возможности детектирования и использования фазовой информации сигнала.

100G/400G PAM4 модули являются одним из ключевых элементов современных оптических коммуникационных систем. Они используют технику модуляции PAM4 (Pulse Amplitude Modulation with 4 levels) для передачи данных на скоростях 100 Гбит/с и 400 Гбит/с.

Принцип работы этих модулей основан на изменении амплитуды импульсов света, чтобы кодировать информацию. В отличие от более простой техники двоичной амплитудной модуляции (BAM), где каждый символ представлен одним уровнем амплитуды, в PAM4 каждый символ представлен четырьмя уровнями амплитуды.

Для достижения этого используются высокоскоростные лазерные диоды или лазерный источник света, способные создавать короткие и интенсивные импульсы света. Эти импульсы проходят через оптическое волокно и приходят к фотоприемнику, который обратно преобразует оптический сигнал в электрический сигнал.

На стороне приемника сигнала проводится обработка и демодуляция сигнала PAM4, чтобы извлечь передаваемую информацию. Для этого используются специальные алгоритмы обработки сигнала, такие как линейное сочетание (linear equalization) и решающее устройство (decision device), которые позволяют достичь высокой скорости передачи данных.

100G/400G PAM4 модули имеют большую пропускную способность по сравнению с более старыми технологиями модуляции, такими как NRZ (Non-Return to Zero). Они могут быть использованы в различных приложениях связи, включая центры обработки данных (data centers), телекоммуникационные системы и другие высокоскоростные оптические коммуникационные системы.

Интегральные волноводы являются ключевыми компонентами фотоники, которые позволяют управлять и направлять поток света на кристаллическом чипе. Они основаны на принципе распространения оптической энергии в виде электромагнитных волн по специально созданным структурам.

Принцип работы интегральных волноводов базируется на использовании оптического явления, называемого полным отражением. Полное отражение происходит при переходе света из среды с более высоким показателем преломления (обычно это материал подложки) в среду с более низким показателем преломления (например, слой фоторезиста). В результате этого явления свет остается запертым и может быть направлен по определенной траектории.

Основная конструкция интегрального волновода состоит из двух или более слоев материала с различными показателями преломления. Обычно используются методы литографии и химической обработки для создания этих структур на поверхности кристаллического чипа. В результате получается плоский волновод, где свет распространяется вдоль определенной траектории.

Интегральные волноводы могут быть различных типов, таких как прямые (straight), изгибаемые (bent) или спиральные (spiral). Это позволяет создавать разнообразные схемы и компоненты на основе этих структур, такие как делители мощности, фазовращатели, модуляторы и детекторы.

Принцип работы интегральных волноводов заключается в передаче и управлении светом по заданной траектории без значительных потерь. Они играют ключевую роль в современной фотонике для достижения высокой скорости передачи данных и минимизации помех при обработке оптических сигналов.

Устройства для связи внутри платы, также известные как Co-packaged Optics (CPO), представляют собой технологию, которая интегрирует оптические модули непосредственно на поверхности чипа электронного устройства. Они обеспечивают высокую пропускную способность и малую задержку передачи данных на коротких расстояниях.

Принцип работы CPO основан на использовании компактных оптических модулей, которые содержат лазерный и фотодетекторный элементы, а также необходимую оптическую систему для направления светового потока. Эти модули размещены близко к процессорам или другим активным элементам на самой плате.

В процессе работы CPO использует волноводы для руководства светом от лазера до приемника. Волноводы могут быть выполнены из материалов с высоким показателем преломления, чтобы минимизировать потери сигнала. Лазер генерирует оптический сигнал, который затем направляется через волновод к фотодетектору. Фотодетектор преобразует оптический сигнал обратно в электрический, который затем может быть обработан процессором или другими устройствами на плате.

Преимущества работы CPO включают высокую пропускную способность, низкую задержку и малый размер. Они также позволяют достичь более компактного дизайна системы, что особенно важно для современных вычислительных устройств с большой плотностью компонентов. Кроме того, использование оптической связи помогает снизить потребление энергии и повысить производительность системы.

Принцип работы CPO отличается от традиционной оптики, где оптические модули располагаются отдельно от чипов на фотонических модулях. Вместо этого CPO интегрирует оптические функции прямо на самой плате или кристаллическом чипе, что делает его более эффективным и экономичным решением для коротких расстояний передачи данных внутри устройства.

Кроме основных принципов работы, можно дополнить описание устройств для связи внутри платы (CPO) следующими деталями:

Интеграция и упаковка: CPO-модули обычно интегрируются непосредственно на поверхности чипа или кристаллического модуля электронного устройства. Это может быть достигнуто с использованием различных техник микроэлектроники и оптической фотолитографии. Подходящая система связи может быть разработана таким образом, чтобы соответствовать требованиям конкретной аппаратной платформы.

Пассивное параллельное соединение: Одной из ключевых особенностей CPO является возможность создания массивных параллельных соединений, то есть одновременная передача нескольких оптических каналов данных между активными элементами на плате. Это значительно повышает пропускную способность и эффективность передачи данных внутри системы.

Управление сигналами: Для эффективного функционирования CPO требуются методы управления и контроля оптических сигналов. Это включает в себя мониторинг и регулировку мощности оптического сигнала, компенсацию потерь на расстоянии передачи и управление модуляцией для достижения требуемой скорости передачи данных.

Охлаждение: При высоких скоростях передачи данных может возникать проблема нагрева CPO-модулей. Для обеспечения надежной работы необходимы эффективные методы охлаждения, которые могут быть интегрированы в конструкцию платы или чипа.

Стандартизация: В настоящее время активно разрабатываются стандарты для CPO, чтобы обеспечить интероперабельность и совместимость различных производителей. Это поможет ускорить внедрение технологии и расширить ее применение в широком диапазоне приложений.

Устройства для связи внутри платы (CPO) представляют перспективную технологию для повышения производительности систем связи на коротких расстояниях. Их комбинация с другими новаторскими решениями, такими как фотонные кристаллы и метаматериалы, может привести к созданию более эффективных и компактных систем связи в будущем.

Коммутационная матрица (или коммутатор) – это устройство, используемое в телекоммуникационных и сетевых системах для управления потоками данных или сигналов между различными портами или каналами.

Принцип работы коммутационной матрицы основан на перенаправлении данных от одного порта к другому. Когда данные поступают на входную сторону коммутатора, он анализирует адрес назначения и принимает решение о передаче этих данных на соответствующий выходной порт. Для этого коммутационная матрица обычно имеет таблицу маршрутизации, которая содержит информацию о связях между входными и выходными портами.

Существуют разные типы коммутационных матриц, такие как:

Кросс-бар: Это самый распространенный тип коммутационной матрицы. Он состоит из двумерного массива переключателей (как правило, электромеханических или полупроводниковых), где каждый переключатель соединяет определенный входной порт с определенным выходным портом.

Матрица временного перемещения: Этот тип коммутационной матрицы используется в системах с временными мультиплексорами. Он основан на использовании временного разделения каналов, где каждый входной порт имеет свой временной слот для передачи данных на выходные порты.

Матрица пространственного перемещения: Этот тип коммутационной матрицы используется в оптических сетях и основан на использовании пространственного разделения каналов. Он позволяет одновременно обрабатывать несколько оптических потоков данных, например, при помощи чередующихся лучей или фазовых модуляторов.

Коммутационные матрицы играют важную роль в построении эффективных коммуникационных систем. Они обеспечивают быструю и надежную пересылку данных между устройствами или сегментами сети, что является ключевым элементом для достижения высокой скорости передачи данных и минимальных задержек при обмене информацией.

Кросс-бар на базе интегрированного фотонного чипа представляет собой коммутационную матрицу, где переключение оптических сигналов осуществляется с использованием компонентов фотоники на одном единственном кремниевом чипе.

Конструкция такого кросс-бара включает несколько ключевых элементов. Во-первых, на чипе присутствуют оптические волноводы, которые служат для направления световых сигналов от входных портов к выходным портам. Эти волноводы могут быть реализованы как полосковые (strip) или облачные (slot) структуры.

Во-вторых, на чипе располагаются переключатели или модуляторы фазы/интенсивности света. Они выполняют функцию управления потоками данных и позволяют перенаправлять оптический сигнал из одного входного порта в желаемый выходной порт. Переключатели могут быть реализованы различными способами, например при помощи электрооптического эффекта или активной модуляции индекса преломления.

Другим важным компонентом кросс-бара на фотонном чипе являются фотодетекторы, которые служат для преобразования оптического сигнала обратно в электрический. Они располагаются на выходных портах и позволяют получить информацию после прохождения через коммутационную матрицу.

Для управления работой кросс-бара может использоваться специальная электроника, такая как микроконтроллер или программируемая логическая схема (ПЛИС). Эти устройства предоставляют интерфейсы для программирования таблицы маршрутизации и контроля состояния переключателей.

Кросс-бар на базе интегрированного фотонного чипа обладает рядом преимуществ. Во-первых, он позволяет достичь высокой скорости передачи данных благодаря свойствам оптических коммуникаций. Во-вторых, такие системы имеют низкую потерю сигнала и шумность, что обеспечивает хорошее качество передачи данных. Кроме того, интеграция всех компонентов на одном чипе делает систему компактной, экономичной и удобной в использовании.

Таким образом, кросс-бар на базе интегрированного фотонного чипа представляет собой передовое решение для коммутации оптических сигналов, обеспечивая высокую производительность и эффективность в системах связи.

Матрица временного перемещения (MTM) на базе интегрированного фотонного чипа представляет собой устройство, используемое в фотонике для манипулирования и переключения оптических сигналов. Она позволяет изменять временные задержки световых импульсов внутри чипа, что открывает возможности для реализации различных функций в системах обработки информации.

Конструкция MTM состоит из нескольких ключевых компонентов. В основе её работы лежит массив элементарных ячеек, каждая из которых состоит из оптического интерферометра и электро-оптического модулятора. Интерферометр обычно реализован на основе волноводной структуры и служит для деления и комбинирования оптического сигнала. Модулятор же контролируется электрическим полем и используется для изменения фазы или амплитуды световой волны.

На практике MTM может быть выполнена как на кремниевой подложке, так и на других материалах, таких как полупроводник или стекло. Использование интегрированных технологий позволяет уменьшить размеры и повысить интеграцию компонентов на одном чипе.

Кроме того, MTM обычно имеет систему управления, которая может программно изменять временные задержки световых импульсов в каждой ячейке. Это позволяет создавать сложные операции с оптическими сигналами, такие как перемещение и коммутация информации между различными каналами или линиями связи.

Таким образом, конструкция Матрицы временного перемещения на базе интегрованного фотонного чипа объединяет интерферометры и модуляторы в массив элементарных ячеек для эффективной манипуляции оптическими сигналами. Она предоставляет гибкость и контроль над передачей информации в фотонных системах обработки данных.

Матрица пространственного перемещения (MSP) на базе интегрированного фотонного чипа – это устройство, которое позволяет манипулировать и переключать оптические сигналы в пространственном измерении. Оно использует массив элементов для изменения направления световых лучей, что открывает возможности для реализации различных функций в фотонных системах.

Конструкция MSP состоит из нескольких ключевых компонентов. В основе её работы лежит матрица активных элементов, каждый из которых представляет собой электро-оптический модулятор или другое подобное устройство. Эти элементы контролируются электрическим полем и позволяют изменять фазу или амплитуду светового луча.

На практике MSP может быть выполнена на интегральной кремниевой подложке или других материалах, таких как полупроводник или стекло. Использование интегрированных технологий позволяет создавать компактные и высокоинтегрированные устройства.

Каждый элемент матрицы имеет набор электродов для управления его поведением и координатами перемещения светового луча. Эти электроды могут быть управляемыми непосредственно или с использованием системы управления на основе программного обеспечения.

Таким образом, конструкция Матрицы пространственного перемещения на базе интегрированного фотонного чипа объединяет массив активных элементов для изменения направления оптических лучей. Она предоставляет гибкость и контроль над передачей информации в пространственном измерении, что может быть полезным для решения различных задач в фотонике и оптической коммуникации.

Принцип работы Матрицы пространственного перемещения (MSP) на базе интегрированного фотонного чипа основывается на управлении световыми лучами с помощью электро-оптического эффекта.

Каждый элемент матрицы состоит из оптического волновода и электродных структур, которые позволяют изменять параметры световой волны, такие как фаза или амплитуда. Это достигается путем применения электрического поля к элементу матрицы.

Когда на элемент MSP подается оптический сигнал, он проходит через оптический волновод и затем проходит через активный элемент – модулятор. Посредством контроля напряжения или тока на электродах модулятора меняется его рефракция, что приводит к изменению фазы или амплитуды световой волны.

Управление каждым элементом MSP может осуществляться независимо друг от друга посредством системы управления на основе программного обеспечения. Это позволяет создавать сложные шаблоны для переключения и манипулирования оптическими сигналами в пространственном измерении.

Таким образом, Матрица пространственного перемещения на базе интегрированного фотонного чипа позволяет управлять световыми лучами с помощью электро-оптического эффекта. Она предоставляет возможность изменять параметры оптических сигналов и манипулировать ими в пространственном измерении, что может быть полезно для решения различных задач в фотонике и оптической коммуникации.

Базовые элементы Фотонных микросхем (

PDK

)

Набор проектирования процесса – PDK (англ. Process Design Kit) для интегральной фотоники – это набор базовых компонентов, созданных фабрикой для открытого доступа к их общему процессу производства. Эти компоненты представлены технически и геометрически в наборах проектирования процесса, и могут использоваться дизайнерами для создания различных фотонных интегральных схем.

Этот подход аналогичен таковому при производстве микроэлектронных схем и заключается в том, что PDK можно рассматривать как набор строительных блоков, где каждый компонент в библиотеке является отдельным блоком. Как и в случае с микроэлектроникой, дизайнер может использовать эти блоки для создания многих типов фотонных схем для различных приложений.

Как и в случае с микроэлектроникой, создание собственных компонентов возможно только при соблюдении правил фабрики. Эти правила включают в себя такие параметры, как стек материала, минимальное расстояние между оптическими компонентами, максимальная глубина травления и т.д.

В настоящее время производство современных оптических интегральных схем происходит на предприятиях, занимающихся производством микроэлектронных компонентов. Это связано с тем, что процесс создания фотонного чипа включает в себя использование схожих технологических процессов, которые используются в производстве микроэлектроники.

В процессе создания фотонного чипа используются такие технологические процессы, как литография, напыление металла, травление и другие. Однако, в отличие от микроэлектроники, в фотонике используются оптические материалы, такие как кремний и нитрид кремния, а также специальные технологии для создания оптических компонентов, таких как волноводы и связывающие элементы.

Разработчики фотонных чипов также используют блоки, как и в случае с разработкой кремниевых микросхем. Для этого они используют набор проектирования процесса (PDK), который предоставляется фабрикой.

PDK можно сравнить с набором строительных блоков, где каждый фотонный компонент в библиотеке является отдельным блоком. Дизайнер может использовать эти блоки для создания многих типов фотонных схем для различных приложений. Общая технология полезна для снижения затрат, когда дизайнер использует предопределенные, протестированные фотонные компоненты на выбранной им платформе.

Этот PDK содержит базовые компоненты, такие как волноводы, связывающие элементы и другие, которые могут быть использованы для создания различных фотонных интегральных схем. Разработчики могут выбирать нужные компоненты из библиотеки PDK, чтобы создавать свои фотонные устройства.

Однако, как и в случае с микроэлектроникой, создание собственных компонентов возможно только при соблюдении правил фабрики. Для этого разработчикам необходимо следовать определенным параметрам, таким как стек материала, минимальное расстояние между оптическими компонентами и другие, чтобы использовать настраиваемый компонент из определенной фабрики.

Таким образом, использование PDK в интегральной фотонике позволяет разработчикам быстрее и эффективнее создавать новые фотонные интегральные схемы, а также уменьшить затраты на разработку и производство. Дизайнеры могут проектировать широкий спектр фотонных интегральных схем (PIC), используя фотонные компоненты фабрики, которые технически и геометрически представлены в их наборах проектирования процесса.

Дизайнер также может создавать свои собственные строительные блоки, но он должен следовать правилам изготовления фабрики, чтобы использовать настраиваемый компонент из определенной фабрики. Правила обычно включают для проектирования определяют стек материала (типы слоев и толщина), минимальное расстояние между оптическими компонентами (например, зазоры между волноводами), максимальная глубина травления, металлизация и электрические зонды (как разместить металл, разрешенные металлические слои) и размер особенностей (размер волноводов, отверстий, активных зон и т.д.).

Материалы и структуры PDK содержит информацию о доступных материалах и структурах, которые можно использовать при проектировании фотонных микросхем.

Важными материалами, используемыми в фотонных микросхемах, являются полупроводники с широкой запрещенной зоной, такие как кремний (Si), германий (Ge) или соединения III-V-группы (например, GaAs). Эти материалы обладают свойством поглощать свет определенной длины волны и генерировать пару электрона-дырка под его воздействием.

Структуры PDK фотонных микросхем обеспечивают контур активной области или пространства для расположения основных компонентов транзистора. Некоторые из наиболее распространенных структур включают:

Волноводы – структуры оптического проводников, которые направляют свет. Они могут быть одномодовой или многомодовой, в зависимости от требуемых свойств передачи сигнала.

Полупроводниковые п-переходы – структуры, которые образуются при соединении полупроводников разных типов проводимости (p и n). Они играют роль предельных контактов фотонного транзистора и служат для подключения к внешней цепи.

Контролирующие электроды. Фотонные микросхемы могут иметь дополнительные электрические контакты или электроды, которые используются для изменения напряжения или тока в базовом слое и, следовательно, для управления пропусканием света через активную область.

PDK является необходимым компонентом при разработке фотонных микросхем, поскольку он предоставляет инженерам все необходимые данные и инструменты для создания и оптимизации устройств на основе принципов фотопроводимости.

Технологические правила PDK определяет технологические правила, которые необходимо соблюдать при разработке фотонной микросхемы. Они указывают на минимальный размер элементов, допустимое расстояние между ними, требования к выравниванию и другую техническую информацию.

В основном, технологические правила PDK включают следующие аспекты:

Геометрия элементов: Это определяет размеры и форму каждого компонента на фотонной микросхеме. Эти данные помогут разработчику создать точный дизайн с учетом требуемых габаритных размеров.

Материалы: Технологические правила указывают используемые материалы для каждого слоя структуры фотонной микросхемы. Например, это может быть полупроводниковый материал или покрытия для защиты от окружающей среды.

Параметры процесса: Важная часть PDK – это набор параметров процесса изготовления, таких как толщина слоя материала, температура обработки и время. Эти параметры определяют точность изготовления и электрические характеристики фотонной микросхемы.

Шаблоны масок: Технологические правила PDK также включают информацию о шаблонах масок, которые используются для создания различных элементов на фотонной микросхеме. Они определяют форму и расположение каждого компонента на субстрате.

Электрические характеристики: Технологическое PDK также может содержать информацию о ключевых электрических характеристиках, таких как проходимость света через устройство или коэффициент усиления для усилителей световой энергии.

Ücretsiz ön izlemeyi tamamladınız.