Kitabı oku: «Contributions to the Theory of Natural Selection», sayfa 9
Conclusion
Although such a variety of interesting facts have been already accumulated, the subject we have been discussing is one of which comparatively little is really known. The natural history of the tropics has never yet been studied on the spot with a full appreciation of “what to observe” in this matter. The varied ways in which the colouring and form of animals serve for their protection, their strange disguises as vegetable or mineral substances, their wonderful mimicry of other beings, offer an almost unworked and inexhaustible field of discovery for the zoologist, and will assuredly throw much light on the laws and conditions which have resulted in the wonderful variety of colour, shade, and marking which constitutes one of the most pleasing characteristics of the animal world, but the immediate causes of which it has hitherto been most difficult to explain.
If I have succeeded in showing that in this wide and picturesque domain of nature, results which have hitherto been supposed to depend either upon those incalculable combinations of laws which we term chance or upon the direct volition of the Creator, are really due to the action of comparatively well-known and simple causes, I shall have attained my present purpose, which has been to extend the interest so generally felt in the more striking facts of natural history to a large class of curious but much neglected details; and to further, in however slight a degree, our knowledge of the subjection of the phenomena of life to the “Reign of Law.”
IV.
THE MALAYAN PAPILIONIDÆ OR SWALLOW-TAILED BUTTERFLIES, AS ILLUSTRATIVE OF THE THEORY OF NATURAL SELECTION
Special Value of the Diurnal Lepidoptera for enquiries of this nature
When the naturalist studies the habits, the structure, or the affinities of animals, it matters little to which group he especially devotes himself; all alike offer him endless materials for observation and research. But, for the purpose of investigating the phenomena of geographical distribution and of local, sexual, or general variation, the several groups differ greatly in their value and importance. Some have too limited a range, others are not sufficiently varied in specific forms, while, what is of most importance, many groups have not received that amount of attention over the whole region they inhabit, which could furnish materials sufficiently approaching to completeness to enable us to arrive at any accurate conclusions as to the phenomena they present as a whole. It is in those groups which are, and have long been, favourites with collectors, that the student of distribution and variation will find his materials the most satisfactory, from their comparative completeness.
Pre-eminent among such groups are the diurnal Lepidoptera or Butterflies, whose extreme beauty and endless diversity have led to their having been assiduously collected in all parts of the world, and to the numerous species and varieties having been figured in a series of magnificent works, from those of Cramer, the contemporary of Linnæus, down to the inimitable productions of our own Hewitson.7 But, besides their abundance, their universal distribution, and the great attention that has been paid to them, these insects have other qualities that especially adapt them to elucidate the branches of inquiry already alluded to. These are, the immense development and peculiar structure of the wings, which not only vary in form more than those of any other insects, but offer on both surfaces an endless variety of pattern, colouring, and texture. The scales, with which they are more or less completely covered, imitate the rich hues and delicate surfaces of satin or of velvet, glitter with metallic lustre, or glow with the changeable tints of the opal. This delicately painted surface acts as a register of the minutest differences of organization—a shade of colour, an additional streak or spot, a slight modification of outline continually recurring with the greatest regularity and fixity, while the body and all its other members exhibit no appreciable change. The wings of Butterflies, as Mr. Bates has well put it, “serve as a tablet on which Nature writes the story of the modifications of species;” they enable us to perceive changes that would otherwise be uncertain and difficult of observation, and exhibit to us on an enlarged scale the effects of the climatal and other physical conditions which influence more or less profoundly the organization of every living thing.
A proof that this greater sensibility to modifying causes is not imaginary may, I think, be drawn from the consideration, that while the Lepidoptera as a whole are of all insects the least essentially varied in form, structure, or habits, yet in the number of their specific forms they are not much inferior to those orders which range over a much wider field of nature, and exhibit more deeply seated structural modifications. The Lepidoptera are all vegetable-feeders in their larva-state, and suckers of juices or other liquids in their perfect form. In their most widely separated groups they differ but little from a common type, and offer comparatively unimportant modifications of structure or of habits. The Coleoptera, the Diptera, or the Hymenoptera, on the other hand, present far greater and more essential variations. In either of these orders we have both vegetable and animal-feeders, aquatic, and terrestrial, and parasitic groups. Whole families are devoted to special departments in the economy of nature. Seeds, fruits, bones, carcases, excrement, bark, have each their special and dependent insect tribes from among them; whereas the Lepidoptera are, with but few exceptions, confined to the one function of devouring the foliage of living vegetation. We might therefore anticipate that their species—population would be only equal to that of sections of the other orders having a similar uniform mode of existence; and the fact that their numbers are at all comparable with those of entire orders, so much more varied in organization and habits, is, I think, a proof that they are in general highly susceptible of specific modification.
Question of the rank of the Papilionidæ
The Papilionidæ are a family of diurnal Lepidoptera which have hitherto, by almost universal consent, held the first rank in the order; and though this position has recently been denied them, I cannot altogether acquiesce in the reasoning by which it has been proposed to degrade them to a lower rank. In Mr. Bates’s most excellent paper on the Heliconidæ, (published in the Transactions of the Linnæan Society, vol. xxiii., p. 495) he claims for that family the highest position, chiefly because of the imperfect structure of the fore legs, which is there carried to an extreme degree of abortion, and thus removes them further than any other family from the Hesperidæ and Heterocera, which all have perfect legs. Now it is a question whether any amount of difference which is exhibited merely in the imperfection or abortion of certain organs, can establish in the group exhibiting it a claim to a high grade of organization, still less can this be allowed when another group along with perfection of structure in the same organs, exhibits modifications peculiar to it, together with the possession of an organ which in the remainder of the order is altogether wanting. This is, however, the position of the Papilionidæ. The perfect insects possess two characters quite peculiar to them. Mr. Edward Doubleday, in his “Genera of Diurnal Lepidoptera,” says, “The Papilionidæ may be known by the apparently four-branched median nervule and the spur on the anterior tibiæ, characters found in no other family.” The four-branched median nervule is a character so constant, so peculiar, and so well marked, as to enable a person to tell, at a glance at the wings only of a butterfly, whether it does or does not belong to this family; and I am not aware that any other group of butterflies, at all comparable to this in extent and modifications of form, possesses a character in its neuration to which the same degree of certainty can be attached. The spur on the anterior tibiæ is also found in some of the Hesperidæ, and is therefore supposed to show a direct affinity between the two groups: but I do not imagine it can counterbalance the differences in neuration and in every other part of their organization. The most characteristic feature of the Papilionidæ, however, and that on which I think insufficient stress has been laid, is undoubtedly the peculiar structure of the larvæ. These all possess an extraordinary organ situated on the neck, the well-known Y-shaped tentacle, which is entirely concealed in a state of repose, but which is capable of being suddenly thrown out by the insect when alarmed. When we consider this singular apparatus, which in some species is nearly half an inch long, the arrangement of muscles for its protrusion and retraction, its perfect concealment during repose, its blood-red colour, and the suddenness with which it can be thrown out, we must, I think, be led to the conclusion that it serves as a protection to the larva, by startling and frightening away some enemy when about to seize it, and is thus one of the causes which has led to the wide extension and maintained the permanence of this now dominant group. Those who believe that such peculiar structures can only have arisen by very minute successive variations, each one advantageous to its possessor, must see, in the possession of such an organ by one group, and its complete absence in every other, a proof of a very ancient origin and of very long-continued modification. And such a positive structural addition to the organization of the family, subserving an important function, seems to me alone sufficient to warrant us in considering the Papilionidæ as the most highly developed portion of the whole order, and thus in retaining it in the position which the size, strength, beauty, and general structure of the perfect insects have been generally thought to deserve.
In Mr. Trimen’s paper on “Mimetic Analogies among African Butterflies,” in the Transactions of the Linnæan Society, for 1868, he has argued strongly in favour of Mr. Bates’ views as to the higher position of the Danaidæ and the lower grade of the Papilionidæ, and has adduced, among other facts, the undoubted resemblance of the pupa of Parnassius, a genus of Papilionidæ, to that of some Hesperidæ and moths. I admit, therefore, that he has proved the Papilionidæ to have retained several characters of the nocturnal Lepidoptera which the Danaidæ have lost, but I deny that they are therefore to be considered lower in the scale of organization. Other characters may be pointed out which indicate that they are farther removed from the moths even than the Danaidæ. The club of the antennæ is the most prominent and most constant feature by which butterflies may be distinguished from moths, and of all butterflies the Papilionidæ have the most beautiful and most perfectly developed clubbed antennæ. Again, butterflies and moths are broadly characterised by their diurnal and nocturnal habits respectively, and the Papilionidæ, with their close allies the Pieridæ, are the most pre-eminently diurnal of butterflies, most of them lovers of sunshine, and not presenting a single crepuscular species. The great group of the Nymphalidæ, on the other hand (in which Mr. Bates includes the Danaidæ and Heliconidæ as sub-families), contains an entire sub-family (Brassolidæ) and a number of genera, such as Thaumantis, Zeuxidia, Pavonia, &c., of crepuscular habits, while a large proportion of the Satyridæ and many of the Danaidæ are shade-loving butterflies. This question, of what is to be considered the highest type of any group of organisms, is one of such general interest to naturalists that it will be well to consider it a little further, by a comparison of the Lepidoptera with some groups of the higher animals.
Mr. Trimen’s argument, that the lepidopterous type, like that of birds, being pre-eminently aërial, “therefore a diminution of the ambulatory organs, instead of being a sign of inferiority, may very possibly indicate a higher, because a more thoroughly aërial form,” is certainly unsound, for it would imply that the most aërial of birds (the swift and the frigate-birds, for example) are the highest in the scale of bird-organization, and the more so on account of their feet being very ill adapted for walking. But no ornithologist has ever so classed them, and the claim to the highest rank among birds is only disputed between three groups, all very far removed from these. They are—1st. The Falcons, on account of their general perfection, their rapid flight, their piercing vision, their perfect feet armed with retractile claws, the beauty of their forms, and the ease and rapidity of their motions; 2nd. The Parrots, whose feet, though ill-fitted for walking, are perfect as prehensile organs, and which possess large brains with great intelligence, though but moderate powers of flight; and, 3rd. The Thrushes or Crows, as typical of the perching birds, on account of the well-balanced development of their whole structure, in which no organ or function has attained an undue prominence.
Turning now to the Mammalia, it might be argued that as they are pre-eminently the terrestrial type of vertebrates, to walk and run well is essential to the typical perfection of the group; but this would give the superiority to the horse, the deer, or the hunting leopard, instead of to the Quadrumana. We seem here to have quite a case in point, for one group of Quadrumana, the Lemurs, is undoubtedly nearer to the low Insectivora and Marsupials than the Carnivora or the Ungulata, as shown among other characters by the Opossums possessing a hand with perfect opposable thumb, closely resembling that of some of the Lemurs; and by the curious Galeopithecus, which is sometimes classed as a Lemur, and sometimes with the Insectivora. Again, the implacental mammals, including the Ornithodelphia and the Marsupials, are admitted to be lower than the placental series. But one of the distinguishing characters of the Marsupials is that the young are born blind and exceedingly imperfect, and it might therefore be argued that those orders in which the young are born most perfect are the highest, because farthest from the low Marsupial type. This would make the Ruminants and Ungulata higher than the Quadrumana or the Carnivora. But the Mammalia offer a still more remarkable illustration of the fallacy of this mode of reasoning, for if there is one character more than another which is essential and distinctive of the class, it is that from which it derives its name, the possession of mammary glands and the power of suckling the young. What more reasonable, apparently, than to argue that the group in which this important function is most developed, that in which the young are most dependent upon it, and for the longest period, must be the highest in the Mammalian scale of organization? Yet this group is the Marsupial, in which the young commence suckling in a fœtal condition, and continue to do so till they are fully developed, and are therefore for a long time absolutely dependent on this mode of nourishment.
These examples, I think, demonstrate that we cannot settle the rank of a group by a consideration of the degree in which certain characters resemble or differ from those in what is admitted to be a lower group; and they also show that the highest group of a class may be more closely connected to one of the lowest, than some other groups which have developed laterally and diverged farther from the parent type, but which yet, owing to want of balance or too great specialization in their structure, have never reached a high grade of organization. The Quadrumana afford a very valuable illustration, because, owing to their undoubted affinity with man, we feel certain that they are really higher than any other order of Mammalia, while at the same time they are more distinctly allied to the lowest groups than many others. The case of the Papilionidæ seems to me so exactly parallel to this, that, while I admit all the proofs of affinity with the undoubtedly lower groups of Hesperidæ and moths, I yet maintain that, owing to the complete and even development of every part of their organization, these insects best represent the highest perfection to which the butterfly type has attained, and deserve to be placed at its head in every system of classification.
Distribution of the Papilionidæ
The Papilionidæ are pretty widely distributed over the earth, but are especially abundant in the tropics, where they attain their maximum of size and beauty, and the greatest variety of form and colouring. South America, North India, and the Malay Islands are the regions where these fine insects occur in the greatest profusion, and where they actually become a not unimportant feature in the scenery. In the Malay Islands in particular, the giant Ornithopteræ may be frequently seen about the borders of the cultivated and forest districts, their large size, stately flight, and gorgeous colouring rendering them even more conspicuous than the generality of birds. In the shady suburbs of the town of Malacca two large and handsome Papilios (Memnon and Nephelus) are not uncommon, flapping with irregular flight along the roadways, or, in the early morning, expanding their wings to the invigorating rays of the sun. In Amboyna and other towns of the Moluccas, the magnificent Deiphobus and Severus, and occasionally even the azure-winged Ulysses, frequent similar situations, fluttering about the orange-trees and flower-beds, or sometimes even straying into the narrow bazaars or covered markets of the city. In Java the golden-dusted Arjuna may often be seen at damp places on the roadside in the mountain districts, in company with Sarpedon, Bathycles, and Agamemnon, and less frequently the beautiful swallow-tailed Antiphates. In the more luxuriant parts of these islands one can hardly take a morning’s walk in the neighbourhood of a town or village without seeing three or four species of Papilio, and often twice that number. No less than 130 species of the family are now known to inhabit the Archipelago, and of these ninety-six were collected by myself. Thirty species are found in Borneo, being the largest number in any one island, twenty-three species having been obtained by myself in the vicinity of Sarawak; Java has twenty-eight species; Celebes twenty-four, and the Peninsula of Malacca, twenty-six species. Further east the numbers decrease; Batchian producing seventeen, and New Guinea only fifteen, though this number is certainly too small, owing to our present imperfect knowledge of that great island.
Definition of the word Species
In estimating these numbers I have had the usual difficulty to encounter, of determining what to consider species and what varieties. The Malayan region, consisting of a large number of islands of generally great antiquity, possesses, compared to its actual area, a great number of distinct forms, often indeed distinguished by very slight characters, but in most cases so constant in large series of specimens, and so easily separable from each other, that I know not on what principle we can refuse to give them the name and rank of species. One of the best and most orthodox definitions is that of Pritchard, the great ethnologist, who says, that “separate origin and distinctness of race, evinced by a constant transmission of some characteristic peculiarity of organization,” constitutes a species. Now leaving out the question of “origin,” which we cannot determine, and taking only the proof of separate origin, “the constant transmission of some characteristic peculiarity of organization,” we have a definition which will compel us to neglect altogether the amount of difference between any two forms, and to consider only whether the differences that present themselves are permanent. The rule, therefore, I have endeavoured to adopt is, that when the difference between two forms inhabiting separate areas seems quite constant, when it can be defined in words, and when it is not confined to a single peculiarity only, I have considered such forms to be species. When, however, the individuals of each locality vary among themselves, so as to cause the distinctions between the two forms to become inconsiderable and indefinite, or where the differences, though constant, are confined to one particular only, such as size, tint, or a single point of difference in marking or in outline, I class one of the forms as a variety of the other.
I find as a general rule that the constancy of species is in an inverse ratio to their range. Those which are confined to one or two islands are generally very constant. When they extend to many islands, considerable variability appears; and when they have an extensive range over a large part of the Archipelago, the amount of unstable variation is very large. These facts are explicable on Mr. Darwin’s principles. When a species exists over a wide area, it must have had, and probably still possesses, great powers of dispersion. Under the different conditions of existence in various portions of its area, different variations from the type would be selected, and, were they completely isolated, would soon become distinctly modified forms; but this process is checked by the dispersive powers of the whole species, which leads to the more or less frequent intermixture of the incipient varieties, which thus become irregular and unstable. Where, however, a species has a limited range, it indicates less active powers of dispersion, and the process of modification under changed conditions is less interfered with. The species will therefore exist under one or more permanent forms according as portions of it have been isolated at a more or less remote period.