Sadece LitRes`te okuyun

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «British Manufacturing Industries: Pottery, Glass and Silicates, Furniture and Woodwork.», sayfa 5

Yazı tipi:

GLASS AND SILICATES

By Professor Fredk. S. Barff, M.A

The very brilliant and useful substance, which forms the subject of this article, is said to have been discovered by the Phœnicians. The story goes that some Phœnician merchants, while cooking their food on the sands near the seashore, noticed that the ashes of the plant, with which they made their fire, caused some of the sand to melt and form a vitreous substance; but whether this tale be true or not, it is well known that for a long time these people made glass from the materials which were abundant on their sea and river coasts.

Glass, however, was produced long before this by the Egyptians for the beads and ornaments used in adorning their mummies, and many specimens of these are in the British Museum. It is certain also that they well knew how to make certain substances impart colour to glass for the manufacture of most of these beads. The Romans made rich goblets of ruby glass, some of which are to be seen in collections in this country, as well as urns to receive the ashes of their dead, four of which, of a green colour, are also in the British Museum. The manufacture of these vessels proves that this nation was well skilled in the arts of blowing and modelling glass; and their designs, which we are now reproducing, show that they were at least not inferior in artistic skill to those who have formed their taste in this highly civilized age. We have no record of glass being used for glazing purposes in ancient times. The Venerable Bede introduced it into this country about 674 A.D., and employed it in the adornment of church windows. Ordinary window glass was made at the works in Crutched Friars in 1557, and plate glass at the large works of the Ravenhead Plate Glass Company, near St. Helen's in Lancashire. About 1776, flint glass vessels were blown at the establishment in the Savoy House; and the second Duke of Buckingham brought over Venetian artists, at that time the most skilled, to make glass for mirrors, carriage windows, and other useful purposes. Their workshop was in Lambeth, and the date of their arrival in this country was 1673. The French were before us in the art of casting glass plates; and in 1688, Stewart commenced this branch of manufacture, which led to the establishment of the very famous works of St. Gobain. England has now large plate glass factories in different parts of the country, and these together yield as their weekly production at least 140,000 superficial feet of the best polished plate, or seven and a quarter millions of feet yearly. The value of plate glass made in England annually, including the rough kinds used for glazing roofs, &c., is estimated at 1,000,000l. France still stands very high, and her plates are extremely perfect in manufacture. St. Marie d'Oignies, in Belgium, also sends a considerable quantity of plate glass into the market. This branch of manufacture has not yet extended to America, which therefore is a large customer of Europe. Formerly, glass making was very heavily taxed in this country, and in 1812 an additional duty was placed on the manufacture of the raw material, which so greatly depressed it, that the income which the State received fell from 328,000l. to 183,000l. per annum. Moreover, large quantities of foreign glass were imported, and this too hindered the development of the industry amongst us. On the repeal of the duty, however, the trade began to increase, and has now reached very large dimensions.

Glass appears to be a mixture of silicates, the nature and chemical composition of which will be explained in a later part of this article.

The materials used are principally sand, with an alkaline substance, either a salt of soda or potash and lime, though in some kinds of glass, oxide of lead takes the place of lime. Other materials are generally employed to correct impurities which may occur in the sand, and which, if present, always impart an objectionable colour to the glass.

There are two kinds of glass in ordinary use: common window glass, which may be divided into sheet, crown, and plate; and flint glass, which is used for decanters, wine-glasses, and tumblers; and, in some special forms, for ornamental stones in imitation of jewels, and also for lenses of telescopes and microscopes. The materials for making these different kinds vary somewhat, although the principal constituents are the same, viz. sand with some salt of soda or potash.

The scientific name for sand, or more properly for its principal constituent, is silica. This compound silica, or oxide of silicon, also called silicic acid, possesses properties similar to those which belong to other acids, namely, it is able, when brought into contact with bodies of an opposite character under suitable conditions, to unite with them and to form salts. Everybody knows, that if tartaric acid be added to carbonate of soda, an effervescence takes place; carbonic acid passes off in the gaseous state, and the residue is composed of a portion of the tartaric acid, which unites with the soda, a double decomposition taking place. If silicic acid be mixed with carbonate of soda, and if the mixture be heated to a high temperature, that is, to a white heat, for some length of time, the same kind of action occurs: carbonic acid goes off, the silica or silicic acid uniting with the soda; and inasmuch as the soda salt was originally called carbonate of soda, after this action, in which carbonic acid is replaced by silicic acid, it is called silicate of soda. Silicic acid at the ordinary temperature of the air and in the dry state, has no action whatever upon carbonate of soda, but when heated sufficiently, the action becomes vigorous. A very interesting experiment may be performed in illustration of this fact in the following manner: if a mixture of carbonate of soda and carbonate of potash be heated in an ordinary fire-clay crucible, and if, when the mixture is melted, some perfectly dry sand be poured into it, effervescence will take place, owing to the expulsion of carbonic acid from the carbonate of soda and potash by means of the silicic acid. If the operation be performed in such a vessel that the carbonic acid can be collected, its presence is readily indicated by the usual tests. This experiment can be easily made by anyone who has ordinary chemical apparatus at his command. If the mixture of carbonate of potash and carbonate of soda be melted in a small platinum crucible; and if, when melted, it be removed quickly while very hot into a tall beaker-glass, and sand be then poured into it, the escaping carbonic acid will, on account of its being heavier than air, be retained in the glass, and its presence can be recognized by its turning lime-water milky (which is, in fact, a solution of lime in water), owing to the formation of carbonate of lime produced by the carbonic acid evolved uniting with the lime dissolved in the water. A mixture of carbonate of soda and carbonate of potash is here used, because either of these salts requires a very high temperature to melt it; but when the two are heated together, the fusibility of both is increased. When sand is heated with oxide of lead (common litharge) they unite, forming a compound similar to that produced by the silica uniting with the soda, as described in the last paragraph. In the first case, a soda glass is formed; in the second, a lead glass is the result. If these two glasses be mixed together and melted in a crucible, and if the proportions in which they are mixed be properly adjusted, and the materials used be pure, a colourless and transparent glass will be formed, similar in appearance to that which is employed in the manufacture of decanters and tumblers. The same kind of glass may be produced by mixing all the materials in due proportions and heating them together. If, instead of oxide of lead, lime be mixed with carbonate of soda and sand, and the mixture be heated to a high temperature, a glass will be formed, in many respects similar to that of which oxide of lead is a constituent, but differing from it in several important particulars. First of all, the lead glass is highly lustrous, and has a great power of refracting light, so that, when it is cut, it presents a brilliant appearance, and by refraction readily produces the prismatic colours. This property does not belong to the glass containing lime, to anything like the same extent. Lead glass, too, is much heavier than lime glass, and is therefore unsuited to many of the purposes for which the latter is generally used, the principal of which is for the glazing of windows.

If, instead of oxide of lead, which is a chemical compound of lead and oxygen gas, or lime, which likewise is one of the metal calcium with oxygen, carbonate of lead or of lime be used, the silicic acid will expel the carbonic acid from these substances at a high temperature, just as it does the carbonic acid from the carbonate of soda and carbonate of potash. It is necessary, for a proper understanding of the scientific part of our subject, that this fact should be borne in mind, and that the acid properties of silica should be thoroughly recognized. Formerly, carbonate of soda was used in the manufacture of ordinary window glass, but now it is found more economical to employ sulphate of soda, which is a much earlier product in the manufacture of soda from common salt than the carbonate, and is therefore less expensive. Carbonic acid is what chemists call a weak acid, by which is meant, that its compounds are not so firm and stable, as those which are formed by other acids with the same substances. Sulphuric acid is a strong and powerful acid, uniting very readily with the oxides of certain metals to form very stable compounds. But although this acid is chemically so powerful in its compounds, yet at a high temperature it is expelled by silicic acid, showing that this substance, so inert in its natural state and at the ordinary temperature of the air, becomes exceedingly active in expelling other acids and in forming compounds, when put under favourable conditions.

If a mixture of common sand and carbonate of soda, the carbonate of soda being in excess, be heated, a glass will be obtained which is slowly soluble in cold, readily soluble in hot water. To these compounds the name of silicate is given, so that we speak of the soda compound as silicate of soda, of the lead compound as silicate of lead, and the lime compound as silicate of lime. Silicate of soda and silicate of potash, when the alkali, that is to say, the soda or potash, is in excess, are both soluble. If a solution of one of these silicates be taken, and if carbonic acid be passed slowly through it, after a time a gelatinous, white, flocculent substance will be formed in the liquid, and eventually precipitated. This white flocculent substance is silicic acid combined with the elements of water, and is therefore called by chemists hydrate of silica. Now this hydrate of silica is soluble in water and in hydrochloric acid; and the method by which it can be brought into solution in water will be explained, when treating fully of what are called soluble silicates and their applications.

Soluble silicates are mentioned here, in order that a more perfect understanding of the nature of silicious compounds may be obtained, by those who do not possess a scientific knowledge of chemistry. The silicic acid in the silicate of soda is precipitated or separated out by carbonic acid, and hence it appears, that an action, exactly the reverse of that which takes place at a high temperature, occurs, when the silicic acid is removed from those conditions in which it has been seen to be (chemically) so active.

Suppose that to a solution of silicate of soda or of potash a soluble salt of calcium be added – the chloride, for example, which is a compound of the metal calcium with chlorine – a double decomposition will take place; the calcium will unite with oxygen in the silicate of soda, forming lime; and this will again unite with the silicic acid, forming silicate of lime; while the chlorine will unite with the sodium, forming chloride of sodium, or common salt.

Here then, silicate of lime is obtained by a process very different from that which has already been described, namely, by the heating of lime with silica at a high temperature. The body formed in the latter case is chemically the same as that produced in the former, there being present the same weight of calcium, the same weight of oxygen, and the same weight of silicic acid in each. Again, if to a solution of silicate of soda, one containing a soluble lead salt, such as the nitrate, be added, the silicic acid will unite with the oxide of lead in the nitrate of lead, and the acid constituent of that body will unite with the oxide of sodium or soda, forming nitrate of soda. It is apparent, therefore, from these remarks, that in whatever way the substances be made to unite, the effects produced as regards chemical composition are the same. If some of the silicate of lime or silicate of lead made by precipitation be dried and heated to a high temperature in a crucible, it will melt or fuse, and form a vitreous substance. In these last cases, as in many others which will have to be alluded to, the silicates formed are not soluble in water, although silicate of lime may be partially dissolved when heated in water under extreme pressure, by which the temperature is considerably increased, and even slightly in cold water.

To ensure the production of definite silicates by the agency of heat, the materials must be mixed together in proper combining proportions; for if more of the metallic oxide is introduced than can combine chemically with the sand, it will be melted in the mass, but the excess will not form a definite compound; whereas by precipitation, the silicates formed always have, when thoroughly washed, a definite composition. This subject will be again referred to, when the manufacture of commercial glass is described.

It has been noticed that the glass found in the windows of old churches and in other places where it has been exposed to the prolonged action of the air and of moisture, has gradually become rough on its surface, and has lost to a considerable extent its transparency. This, which would be a defect in glass for the glazing of ordinary windows, where transparency is desired, is rightly regarded as a beauty in glass which is to be used for the ornamentation of windows. Many reasons have been offered in explanation of this apparently peculiar property of ancient glass; and that which appears to be correct is, that glass is a mechanical mixture of different silicates, some of which may be soluble in water, and others insoluble. The old window glass, whose manufacture will be more fully described by-and-by, was made in a less perfect manner than modern appliances enable glass manufacturers now to produce the same article, so that the silicates composing the old glass were not as intimately mixed as those used in modern glass. By the slow action of air and moisture, portions of the soluble silicates have been dissolved out, and hence we frequently find a sort of honeycomb appearance on the surface of ancient glass, as well as a thin film, which, by refraction of light, causes an opalescence when viewed by reflected light. Efforts have of late been made to produce a similar effect by employing different methods in the process of manufacture, but without complete success. The fact, however, that such changes have taken place in this less perfectly fused glass, tends to show, that if one silicate can be dissolved out, there cannot be chemical union between all the silicates. If a piece of modern window glass be heated in water under pressure in a closed vessel, it will present somewhat the appearance of ancient glass, for a considerable quantity of soluble silicate will be dissolved out from it. The object in dwelling on this matter here, is to induce makers to attend more to the chemical composition of their glass, for, doubtless, much more satisfactory results would be obtained both as to the quality of the material and the cost of its production, if thoroughly scientific investigations were conducted by a competent chemist.

MANUFACTURE OF GLASS

The first object in glass making is to obtain suitable materials. The sand which is employed for window glass differs from that which is required for flint glass, in that the latter should be as pure as possible. The maker can correct the impurities in the window glass sand, provided they be not present in too great quantities; but it is far more difficult, in the case of flint glass, to chemically counteract the influence of those substances which might impair its tint. So that the manufacturer would rather pay large prices for his sand, than trust to expedients which in their application might fail, and thus cause a greater loss.

One of the principal and most troublesome impurities met with in sand, is iron in the form of oxide. There are two oxides of iron: one, the protoxide, which imparts a green colour to glass; and the other the peroxide, whose staining property is yellow. A very small quantity of the former will give an appreciably green tint, whereas it requires a large quantity of the peroxide to produce even a delicate yellow. In all glass making, it is found necessary to use something which will counteract the colouring properties of these two oxides. The material employed was black oxide of manganese. This is still used in certain glass-works, but from its injurious action on the fire-clay pots, arsenious acid or common white arsenic is employed to effect the same object. The chemical action in the two cases is different: the black oxide of manganese is what is termed an oxidizing agent, and gives up, at a high temperature, a portion of its oxygen to the protoxide of iron, thereby converting it into the peroxide. It thus becomes comparatively harmless, by converting a quantity of that oxide, which gives a green colour, into the other oxide, which has little or no power of colouring, except it be present in large quantities. The difficulty in using black oxide of manganese is, the exact proportioning of it to the quantity of iron present in the sand, a quantity which cannot be easily determined. If the black oxide of manganese be used in excess, some of the oxide of manganese remains unreduced, and, when this is the case, it gives a purple colour to glass. If used in exact proportions, it is reduced to an oxide which does not impart colour to glass. This may be seen in many of the old plate glass windows which were employed for glazing purposes some sixty or seventy years ago, the colour of the panes being generally purple.

Since this article was written, I have been consulted by a glass firm of eminence, as to the use of pure black oxide of manganese in the manufacture of flint glass, instead of that ordinarily supplied in commerce. The black oxide of manganese usually sold contains many other constituents besides black oxide of manganese; amongst these are iron, copper, cobalt, and alumina.

The iron, as will be seen from what has before been stated, is a decidedly objectionable ingredient to use along with the manganese.

Copper and cobalt both stain glass, the former of a bluish-green colour, while the latter makes it blue; and a small quantity of the latter has great staining power. I have thought it advisable to give analyses of the black oxides of manganese, and they are as follows:

Binoxide of manganese (Molecule, Mn.O2), is found native as pyrolusite or polyanite. Appended are two analyses of pyrolusite containing sesquioxide of iron.


The native binoxide often contains both copper and cobalt in addition to iron; frequently to the amount of as much as 1 per cent. of copper and about ·54 per cent. of cobalt.

Wad, a native binoxide of manganese, sometimes contains 54·34 per cent. of iron, while nearly all the manganese ores contain more or less alumina, varying from ·5 per cent. to as much as 20 per cent.

From the composition of ordinary commercial black oxide of manganese, as shown by these analyses, it is evident that it is better to use the pure article, and this has been found to be the case by the firm who have adopted it in lieu of commercial black oxide of manganese. I therefore strongly recommend all glass makers to try and experiment with it, for the results obtained will largely counterbalance the extra cost of the pure material; and I also much doubt whether the same injurious effects will be produced on the pots, as is the case where commercial manganese is employed.

Arsenious acid also acts as an oxidizing agent, in that it gives up its oxygen to the protoxide of iron, converting it into the peroxide; but the arsenic itself, which has lost its oxygen, is reduced to the metallic state, and being volatile, does not remain with the glass, but passes off by the flues of the furnace. If too much arsenic is used, it sometimes renders the glass milky or cloudy.

Before describing in detail the method of mixing and founding glass, it will be necessary to mention the composition of the vessels in which the glass is made. They are called glass-pots, and differ in shape according to the different kinds of glass to be made in them. Glass-pots are made of fire-clay (generally the best Stourbridge), which is a silicate of alumina, and here great care is taken to select that which contains least lime or iron. It is ground, then moistened and well kneaded together, and left to ripen, while a certain quantity of old glass-pot is ground fine and mixed with the fresh fire-clay. Masses about the size of two hands are kneaded separately, the object being to exclude all air bubbles, and to obtain a perfectly homogeneous lump. The bottom of the glass-pot is then laid, the masses of fire-clay being pressed in with the greatest care, so as to avoid all cracks or places where air might enter during the slow process of drying.

The modern shape is round; though formerly certain glass-pots, called cuvettes, used in the purifying of plate glass, were square. Pots used in the manufacture of common crown and sheet window glass, generally speaking, are larger at the top than at the bottom; but whatever may be the shape of the pot, the method of its building is the same. The sides are carefully made of fire-clay, each piece being laid on by itself and kneaded like the bottom of the pot, so that it is slowly built up until it reaches the desired height. It is then dried very gradually, and the process is finished in artificially warmed chambers. Before putting it in its place in the glass-furnace, it is allowed to remain for some time in what is called a pot-arch, that is, an archway built of fire-clay bricks, along the side of which is a fireplace, by means of which the arch is brought up to a red heat; and after it has been heated sufficiently, is removed while red-hot and put into the furnace. Glass-pots are never allowed to cool, and with care they may last for several months. From this description of their manufacture, it will be clear that it is attended with considerable cost, varying from 5l. to 10l.

There are three different kinds of ordinary pots for crown, plate, and flint glass; and of these the last is decidedly the most expensive, as its top is covered over, and presents the appearance of a dome with an opening in front, through which the materials can be introduced when the pot is charged, and from which, when made, the glass may be drawn, in order to be blown into shape by the workman. In glass-furnaces the pots are sometimes arranged in a circle, with their mouths opening into the glass-house; but now a different construction is sometimes employed, since other methods of heating the furnaces have been introduced. It is hardly within the scope of this article to enter into a description of glass-furnaces; suffice it to state, that they should be of such a construction as to yield the greatest amount of well-regulated heat for the smallest consumption of fuel, and this object seems to be best effected by the adoption of Mr. Siemens' excellent principle of heating furnaces. For some years his process has been in use at the Thames Plate Glass Company's Works, where the saving of fuel has been very considerable, and the glass greatly improved, owing to the fact that impurities from the fuel employed cannot possibly find such easy entrance into the glass-pot. In any case, the construction of the furnace is such, as to be best adapted to the convenience of the workmen, according to the kinds of glass which they have to make. Differently arranged furnaces are used for bottles from those employed for crown and sheet glass.

It has lately come to my knowledge that flint glass, that is to say, the glass used for tumblers, decanters, and such like, is occasionally injured by the appearance in it of little opaque white spots. Some portions of glass of this character have been analyzed by me, when I found that these white spots were owing to the presence of a glass containing alumina. Now alumina raises the melting point of any glass of which it is a constituent. So, then, these white spots were due to the presence in the flint glass, which was perfectly clear, of a much less fusible glass which was only partly made when the flint glass was ready for working. On investigating the matter, it was found that the alumina came from the glass-pots, for when by my advice the faulty pot was withdrawn from the furnace and carefully examined, although it had been in work only six weeks, the bottom was honey-combed to a very considerable extent, showing that portions of the pot had been dissolved; and inasmuch as the fire-clay, of which the pots are made, contains a large quantity of alumina, it was not difficult to trace the source of these white spots which had rendered useless much very valuable glass. On inquiry it was found that the pots had been made entirely of new clay, and on reference to the book of workings, which was kept in the glass-house, it was also found that for some time, the glass-pots used in that establishment had been made of new clay, and that on a previous occasion a similar calamity had before happened.

In the records kept where pots were made, as has already been described, with a portion of old pot as well as new clay, no white spots had ever appeared in the glass. It is therefore manifest, that it is much safer to use a portion of old pot than to trust to pots made entirely of new clay.

Having considered briefly the manufacture of glass-pots, I shall proceed to the treatment of the materials to be employed. In making common window glass, ordinary sand, which does not contain any very large quantity of iron, may be used, the alkali employed being sulphate of soda, while the purifying material is either arsenic or black oxide of manganese. A small quantity of anthracite coal is added to the mixture, in order to assist in the reduction of the sulphate of soda, together with some lime. The materials are carefully mixed and placed in the furnace, where they are heated for some time, a process which is called "fritting." Its object is to perfectly dry the materials, so as to expel carbonic acid gas, which would otherwise cause swelling in the glass; but no combination must take place, to allow of silicates being formed, otherwise the alkali would melt first and attack the substance of the glass-pots, and part of it would be volatilized and lost. When this operation is completed, the fritt is put into the hot glass-pot, and submitted to the action of the heat of the furnace, until the glass is made, or "founded," as it is technically termed. In the case of sheet and crown glass, this process lasts from sixteen to seventeen hours, for it will be remembered that the top of the pot is open to the furnace, so that the flames pass over the surface of its contents. In this way the materials get heated more rapidly than when a covered glass-pot is used.

M. Gehlen gives as a good mixture for window glass:



Different makers have different mixtures. This by M. Gehlen is given as about the proportions of the several constituents employed.

The charging of the pots is conducted in this manner: they are filled with lumps of fritt, and the heat of the furnace is raised as rapidly as possible, until, in about eight or nine hours the fritt has run down or melted into glass. More fritt is then added, which also melts, and from time to time this is repeated, till the pot contains a sufficient quantity. After about sixteen hours the whole has become converted into glass, and the surface of the molten mass is covered with liquid salt and sulphate of soda. This scum is called glass-gall or sandiver, and is carefully removed with iron ladles. Some broken glass, or cullet, is now thrown into the glass-pot, a little at a time, the object being to cause any salt which may remain in the pot to rise to the surface, which is then removed, and so the glass is in this manner purified, after it has been further heated for some hours, to expel gases.

When the glass is made, and its temperature so reduced that it is in a doughy or pasty state, it is then worked off by the blowers into either sheets or tables, as is desired. The blowing of sheet and crown glass is a work of considerable difficulty and labour, and one which cannot be successfully performed, except by a workman who has been brought up from boyhood in a glass-house. A quantity of the soft glass is collected or gathered on the end of a blowpipe, and the workman then blows into it, and distends it into a globular form. Now it is necessary, in making sheet glass, that that globular form should be elongated; the workman therefore holds his blowpipe, which is about five feet long, in a vertical direction, and the softened globe becomes pear-shaped. By dexterously swinging the blowpipe from side to side, which he does while standing on a plank placed over a sort of pit, and by causing it to rise on either side, he converts the pear-shape into a true cylinder, having rounded ends. When the cylinder has assumed the exact shape desired, he places his thumb on the end of the blowpipe, and holds the opposite end of the cylinder in the mouth of the furnace. The glass softens at the heated end, and the expanding air causes it to burst the opening. It is then shaped with a suitable tool, so that it is of the diameter of the cylinder. When the latter is cooled, a piece of hot glass is applied to its shoulder with a pontee, and is drawn out into a thread around it. This makes the glass hot. The thread of glass is removed, a cold instrument is applied rapidly, and the shoulder of the blowing is cut off. The glass is next detached from the blowpipe, and its ends removed, and it is then annealed for a short time, and cut down lengthways internally by a diamond. It is afterwards placed, with the long cut uppermost, in what is called a flattening kiln, that is, in a sort of oven or furnace heated to a high temperature and having a perfectly smooth stone floor; after a short exposure the glass softens, and a workman, with suitable wooden tools, opens it out where it was cut by the diamond, and causes it to lie flat upon the stone. It is then rubbed by a wooden tool, and in this way is flattened, removed from the flattening stone kiln, and placed in a hot chamber, in which it is allowed to cool slowly, for the purpose of "annealing."