Kitabı oku: «Boys' Second Book of Inventions», sayfa 6
Electricity is, indeed, only another name for certain vibrations in the ether. We say that electricity "flows" in a wire, but nothing really passes except an etheric wave, for the atoms composing the wire, as well as the air and the earth, and even the hardest substances, are all afloat in ether. Vibrations, therefore, started at one end of the wire travel to the other. Throw a stone into a quiet pond. Instantly waves are formed which spread out in every direction; the water does not move, except up and down, yet the wave passes onward indefinitely. Electric waves cannot be seen, but electricians have learned how to incite them, to a certain extent how to control them, and have devised cunning instruments which register their presence.
Electrical waves have long been harnessed by the use of wires for sending communications; in other words, we have had wire telegraphy. But the ether exists outside of the wire as well as within; therefore, having the ether everywhere, it must be possible to produce waves in it which will pass anywhere, as well through mountains as over seas, and if these waves can be controlled they will evidently convey messages as easily and as certainly as the ether within wires. So argued Mr. Marconi. The difficulty lay in making an instrument which would produce a peculiar kind of wave, and in receiving and registering this wave in a second apparatus located at a distance from the first. It was, therefore, a practical mechanical problem which Marconi had to meet. Beginning with crude tin boxes set up on poles on the grounds of his father's estate in Italy, he finally devised an apparatus from which a current generated by a battery and passing in brilliant sparks between two brass balls was radiated from a wire suspended on a tall pole. By shutting off and turning on this peculiar current, by means of a device similar to the familiar telegrapher's key, the waves could be so divided as to represent dashes and dots, and spell out letters in the Morse alphabet. This was the transmitter. It was, indeed, simple enough to start these waves travelling through space, to jar the etheric jelly, so to speak; but it was far more difficult to devise an apparatus to receive and register them. For this purpose Marconi adopted a device invented by an Italian, Calzecchi, and improved by a Frenchman, M. Branley, called the coherer, and the very crux of the system, without which there could be no wireless telegraphy. This coherer, which he greatly improved, is merely a little tube of glass as big around as a lead-pencil, and perhaps two inches long. It is plugged at each end with silver, the plugs nearly meeting within the tube. The narrow space between them is filled with finely powdered fragments of nickel and silver, which possess the strange property of being alternately very good and very bad conductors of electrical waves. The waves which come from the transmitter, perhaps 2,000 miles away, are received on a suspended kite-wire, exactly similar to the wire used in the transmitter, but they are so weak that they could not of themselves operate an ordinary telegraph instrument. They do, however, possess strength enough to draw the little particles of silver and nickel in the coherer together in a continuous metal path. In other words, they make these particles "cohere," and the moment they cohere they become a good conductor for electricity, and a current from a battery near at hand rushes through, operates the Morse instrument, and causes it to print a dot or a dash; then a little tapper, actuated by the same current, strikes against the coherer, the particles of metal are jarred apart or "decohered," becoming instantly a poor conductor, and thus stopping the strong current from the home battery. Another wave comes through space, down the suspended kite-wire, into the coherer, there drawing the particles again together, and another dot or dash is printed. All these processes are continued rapidly, until a complete message is ticked out on the tape. Thus Mr. Kemp knew when he heard the tapper strike the coherer that a signal was coming, though he could not hear the click of the receiver itself. And this is in bare outline Mr. Marconi's invention – this is the combination of devices which has made wireless telegraphy possible, the invention on which he has taken out more than 132 patents in every civilised country of the world. Of course his instruments contain much of intricate detail, of marvellously ingenious adaptation to the needs of the work, but these are interesting chiefly to expert technicians.
In his actual transoceanic experiments of December, 1901, Mr. Marconi's transmitting station in England was fitted with twenty masts 210 feet high, each with its suspended wire, though not all of them were used. A current of electricity sufficient to operate some 300 incandescent lamps was used, the resulting spark being so brilliant that one could not have looked at it with the unshaded eye. The wave which was thus generated had a length of about a fifth of a mile, and the rate of vibration was about 800,000 to the second. Following the analogy of the stone cast in the pond with the ripples circling outward, these waves spread from the suspended wires in England in every direction, not only westward toward the cliff where Marconi was flying his kite, but eastward, northward, and southward, so that if some of Mr. Marconi's assistants had been flying kites, say on the shore of Africa, or South America, or in St. Petersburg, they might possibly, with a corresponding receiver, have heard the identical signals at the same instant. In his early experiments Marconi believed that great distances could not be obtained without very high masts and long, suspended wires, the greater the distance the taller the mast, on the theory that the waves were hindered by the curvature of the earth; but his later theory, substantiated by his Newfoundland experiments, is that the waves somehow follow around the earth, conforming to its curve, and the next station he establishes in America will not be set high on a cliff, as at St. John's, but down close to the water on level land. His Newfoundland experiments have also convinced him that one of the secrets of successful long-distance transmission is the use of a more powerful current in his transmitter, and this he will test in his next trials between the continents.
And now we come to the most important part of Mr. Marconi's work, the part least known even to science, and the field of almost illimitable future development. This is the system of "tuning," as the inventor calls it, the construction of a certain receiver so that it will respond only to the message sent by a certain transmitter. When Marconi's discoveries were first announced in 1896, there existed no method of tuning, though the inventor had its necessity clearly in mind. Accordingly the public inquired, "How are you going to keep your messages secret? Supposing a warship wishes to communicate with another of the fleet, what is to prevent the enemy from reading your message? How are private business despatches to be secured against publicity?" Here, indeed, was a problem. Without secrecy no system of wireless telegraphy could ever reach great commercial importance, or compete with the present cable communication. The inventor first tried using a parabolic copper reflector, by means of which he could radiate the electric waves exactly as light – which, it will be borne in mind, is only another kind of etheric wave – is reflected by a mirror. This reflector could be faced in any desired direction, and only a receiver located in that direction would respond to the message. But there were grave objections to the reflector; an enemy might still creep in between the sending and receiving stations, and, moreover, it was found that the curvature of the earth interfered with the transmission of reflected messages, thereby limiting their usefulness to short distances.
In passing, however, it may be interesting to note one extraordinary use for this reflecting system which the inventor now has in mind. This is in connection with lighthouse work. Ships are to be provided with reflecting instruments which in dense fog or storms can be used exactly as a searchlight is now employed on a dark night to discover the location of the lighthouses or lightships. For instance, the lighthouse, say, on some rocky point on the New England coast would continually radiate a warning from its suspended wire. These waves pass as readily through fog and darkness and storm as in daylight. A ship out at sea, hidden in fog, has lost its bearings; the sound of the warning horn, if warning there is, seems to come first from one direction, then from another, as sounds do in a fog, luring the ship to destruction. If now the mariner is provided with a wireless reflector, this instrument can be slowly turned until it receives the lighthouse warning, the captain thus learning his exact location; if in distress, he can even communicate with the lighthouse. Think also what an advantage such an equipment would be to vessels entering a dangerous harbour in thick weather. This is one of the developments of the near future.
The reflector system being impracticable for long-distance work, Mr. Marconi experimented with tuning. He so constructed a receiver that it responds only to a certain transmitter. That is, if the transmitter is radiating 800,000 vibrations a second, the corresponding receiver will take only 800,000 vibrations. In exactly the same way a familiar tuning fork will respond only to another tuning fork having exactly the same "tune," or number of vibrations per second. And Mr. Marconi has now succeeded in bringing this tuning system to some degree of perfection, though very much work yet remains to be done. For instance, in one of his English experiments, at Poole in England, he had two receivers connected with the same wire, and tuned to different transmitters located at St. Catherine's Point. Two messages were sent, one in English and one in French. Both were received at the same time on the same wire at Poole, but one receiver rolled off its message in English, the other in French, without the least interference. And so when critics suggested that the inventor may have been deceived at St. John's by messages transmitted from ocean liners, he was able to respond promptly:
"Impossible. My instrument was tuned to receive only from my station in Cornwall."
Indeed, the only wireless-telegraph apparatus that could possibly have been within hundreds of miles of Newfoundland would be one of the Marconi-fitted steamers, and the "call" of a steamer is not the letter "S," but "U."
The importance of the new system of tuning can hardly be overestimated. By it all the ships of a fleet can be provided with instruments tuned alike, so that they may communicate freely with one another, and have no fear that the enemy will read the messages. The spy of the future must be an electrical expert who can slip in somehow and steal the secret of the enemy's tunes. Great telegraph companies will each have its own tuned instruments, to receive only its own messages, and there may be special tunes for each of the important governments of the world. Or perhaps (for the system can be operated very cheaply) the time will even come when the great banking and business houses, or even families and friends, will each have its own wireless system, with its own secret tune. Having variations of millions of different vibrations, there will be no lack of tunes. For instance, the British navy may be tuned to receive only messages of 700,000 vibrations to the second, the German navy 1,500,000, the United States Government 1,000,000, and so on indefinitely.
Tuning also makes multiplex wireless telegraphy a possibility; that is, many messages may be sent or received on the same suspended wire. Supposing, for instance, the operator was sending a hurry press despatch to a newspaper. He has two transmitters, tuned differently, connected with his wire. He cuts the despatch in two, sends the first half on one transmitter, and the second on the other, thereby reducing by half the time of transmission.
A sort of impression prevails that wireless telegraphy is still largely in the uncertain experimental stage; but, as a matter of fact, it has long since passed from the laboratory to a wide commercial use. Its development since Mr. Marconi's first paper was read, in 1896, and especially since the first message was sent from England to France across the Channel in March, 1899, has been astonishingly rapid. Most of the ships of the great navies of Europe and all the important ocean liners are now fitted with the "wireless" instruments. The system has been recently adopted by the Lloyds of England, the greatest of shipping exchanges. It is being used on many lightships, and the New York Herald receives daily reports from vessels at sea, communicated from a ship station off Nantucket. Were there space to be spared, many incidents might be told showing in what curious and wonderful ways the use of the "wireless" instruments has saved life and property, to say nothing of facilitating business.
And it cannot now be long before a regular telegraph business will be conducted between Massachusetts and England, through the new stations. Mr. Marconi informed me that he would be able to build and equip stations on both sides of the Atlantic for less than $150,000, the subsequent charge for maintenance being very small. A cable across the Atlantic costs between $3,000,000 and $4,000,000, and it is a constant source of expenditure for repairs. The inventor will be able to transmit with single instruments about twenty words a minute, and at a cost ridiculously small compared with the present cable tolls. He said in a speech delivered at a dinner given him by the Governor at St. John's that messages which now go by cable at twenty-five cents a word might be sent profitably at a cent a word or less, which is even much cheaper than the very cheapest present rates in America for messages by land wires. It is estimated that about $400,000,000 is invested in cable systems in various parts of the world. If Marconi succeeds as he hopes to succeed, much of the vast network of wires at the bottom of the world's oceans, represented by this investment, will lose its usefulness. It is now the inventor's purpose to push the work of installation between the continents as rapidly as possible, and no one need be surprised if the year 1902 sees his system in practical operation. Along with this transatlantic work he intends to extend his system of transmission between ships at sea and the ports on land, with a view to enabling the shore stations to maintain constant communication with vessels all the way across the Atlantic. If he succeeds in doing this, there will at last be no escape for the weary from the daily news of the world, so long one of the advantages of an ocean voyage. For every morning each ship, though in mid-ocean, will get its bulletin of news, the ship's printing-press will strike it off, and it will be served hot with the coffee. Yet think what such a system will mean to ships in distress, and how often it will relieve the anxiety of friends awaiting the delayed voyager.
Mr. Marconi's faith in his invention is boundless. He told me that one of the projects which he hoped soon to attempt was to communicate between England and New Zealand. If the electric waves follow the curvature of the earth, as the Newfoundland experiments indicate, he sees no reason why he should not send signals 6,000 or 10,000 miles as easily as 2,000.
Then there is the whole question of the use of wireless telegraphy on land, a subject hardly studied, though messages have already been sent upward of sixty miles overland. The new system will certainly prove an important adjunct on land in war-time, for it will enable generals to signal, as they have done in South Africa, over comparatively long distances in fog and storm, and over stretches where it might be impossible for the telegraph corps to string wires or for couriers to pass on account of the presence of the enemy.
CHAPTER VIII
SEA-BUILDERS
The Story of Lighthouse Building – Stone-tower Lighthouses, Iron Pile Lighthouses, and Steel Cylinder Lighthouses
A sturdy English oak furnished the model for the first of the great modern lighthouses. A little more than one hundred and forty years ago John Smeaton, maker of odd and intricate philosophical instruments and dabbler in mechanical engineering, was called upon to place a light upon the bold and dangerous reefs of Eddystone, near Plymouth, England. John Smeaton never had built a lighthouse; but he was a man of great ingenuity and courage, and he knew the kind of lighthouse not to build; for twice before the rocks of Eddystone had been marked, and twice the mighty waves of the Atlantic had bowled over the work of the builders as easily as they would have overturned a skiff. Winstanley, he of song and story, designed the first of these structures, and he and all his keepers lost their lives when the light went down; the other, the work of John Rudyerd, was burned to the water's edge, and one of the keepers, strangely enough, died from the effects of melting lead which fell from the roof and entered his open mouth as he gazed upward. Both of these lighthouses were of wood, and both were ornamented with balconies and bay-windows, which furnished ready holds for the rough handling of the wind.
John Smeaton walked in the woods and thought of all these problems. He tells quaintly in his memoirs how he observed the strength with which an oak-tree bore its great weight of leaves and branches; and when he built his lighthouse, it was wide and flaring at the base, like the oak, and deeply rooted into the sea-rock with wedges of wood and iron. The waist was tapering and cylindrical, bearing the weight of the keeper's quarters and the lantern as firmly and jauntily as the oak bears its branches. Moreover, he built of stone, to avoid the possibility of fire, and he dovetailed each stone into its neighbour, so that the whole tower would face the wind and the waves as if it were one solid mass of granite. For years Smeaton's Eddystone blinked a friendly warning to English mariners, serving its purpose perfectly, until the Brothers of Trinity saw fit to build a larger tower in its place.
In England the famous lighthouses of Bell Rock, built by Robert Stevenson, Skerryvore, and Wolf Rock are all stone towers; and in our own country, Minot's Ledge, off Boston Harbour, more difficult of construction than any of them, Spectacle Reef light in Lake Huron, and Stannard Rock light in Lake Superior are good examples of Smeaton's method of building.
The mighty stone tower still remains for many purposes the most effective method of lighting the pathways of the sea, but it is both exceedingly difficult to build, and it is very expensive. Within comparatively recent years busy inventors have thought out several new plans for lighthouses, which are quite as wonderful and important in their way as wireless telegraphy and the telephone are in the realm of electricity.
One of these inventions is the iron-pile or screw-pile lighthouse, and the other is the iron cylinder lighthouse. I will tell the story of each of them separately.
The skeleton-built iron-pile lighthouse bears much the same relation to the heavy stone tower lighthouse that a willow twig bears to a great oak. The latter meets the fury of wind and wave with stern resistance, opposing force to force; the former conquers its difficulties by avoiding them.
A completed screw-pile lighthouse has the odd appearance of a huge, ugly spider standing knee-deep in the sea. Its squat body is the home of the keeper, with a single bright eye of light at the top, and its long spindly legs are the iron piles on which the structure rests. Thirty years ago lighthouse builders were much pleased with the ease and apparent durability of the pile light. An Englishman named Mitchell had invented an iron pile having at the end a screw not unlike a large auger. By boring a number of these piles deep into the sand of the sea-bottom, and using them as the foundation for a small but durable iron building, he was enabled to construct a lighthouse in a considerable depth of water at small expense. Later builders have used ordinary iron piles, which are driven into the sand with heavy sledges. Waves and tides pass readily through the open-work of the foundation, the legs of the spider, without disturbing the building overhead. For Southern waters, where there is no danger of moving ice-packs, lighthouses of this type have been found very useful, although the action of the salt water on the iron piling necessitates frequent repairs. More than eighty lights of this description dot the shoals of Florida and adjoining States. Some of the oldest ones still remain in use in the North, notably the one on Brandywine shoal in Delaware Bay; but it has been found necessary to surround them with strongly built ice-breakers.
Two magnificent iron-pile lights are found on Fowey Rocks and American Shoals, off the coast of Florida, the first of which was built with so much difficulty that its story is most interesting.
Fowey Reef lies five miles from the low coral island of Soldier Key. Northern storms, sweeping down the Atlantic, brush in wild breakers over the reef and out upon the little key, often burying it entirely under a torrent of water. Even in calm weather the sea is rarely quiet enough to make it safe for a vessel of any size to approach the reef. The builders erected a stout elevated wharf and store-house on the key, and brought their men and tools to await the opportunity to dart out when the sea was at rest and begin the work of marking the reef. Before shipment, the lighthouse, which was built in the North, was set up, complete from foundation to pinnacle, and thoroughly tested.
At length the workmen were able to remain on the reef long enough to build a strong working platform twelve feet above the surface of the water, and set on iron-shod mangrove piles. Having established this base of operations in the enemy's domain, a heavy iron disk was lowered to the reef, and the first pile was driven through the hole at its centre. Elaborate tests were made after each blow of the sledge, and the slightest deviation from the vertical was promptly rectified with block and tackle. In two months' time nine piles were driven ten feet into the coral rock, the workmen toiling long hours under a blistering sun. When the time came to erect the superstructure, the sea suddenly awakened and storm followed storm, so that for weeks together no one dared venture out to the reef. The men rusted and grumbled on the narrow docks of the key, and work was finally suspended for an entire winter. At the very first attempt to make a landing in the spring, a tornado drove the vessels far out of their course. But a crew was finally placed on the working platform, with enough food to last them several weeks, and there they stayed, suspended between the sea and the sky, until the structure was complete. This lighthouse cost $175,000.
The famous Bug Light of Boston and Thimble Light of Hampton Roads, Va., are both good examples of the iron-pile lighthouse.
Now we come to a consideration of iron cylinder lighthouses, which are even more wonderful, perhaps, than the screw-piles, and in constructing them the sea-builder touches the pinnacle of his art.
Imagine a sandy shoal marked only by a white-fringed breaker. The water rushes over it in swift and constantly varying currents, and if there is a capful of wind anywhere on the sea, it becomes an instant menace to the mariner. The shore may be ten or twenty miles away, so far that a land-light would only lure the seaman into peril, instead of guiding him safely on his way. A lightship is always uncertain; the first great storm may drive it from its moorings and leave the coast unprotected when protection is most necessary. Upon such a shoal, often covered from ten to twenty feet with water, the builder is called upon to construct a lighthouse, laying his foundation in shifting sand, and placing upon it a building strong enough to withstand any storm or the crushing weight of wrecks or ice-packs.
It was less than twenty years ago that sea-builders first ventured to grapple with the difficulties presented by these off-shore shoals. In 1881 Germany built the first iron cylinder lighthouse at Rothersand, near the mouth of the Weser River, and three years later the Lighthouse Establishment of the United States planted a similar tower on Fourteen-Foot Banks, over three miles from the shores of Delaware Bay, in twenty feet of water. Since then many hitherto dangerous shoals have been marked by new lighthouses of this type.
When a builder begins a stone tower light on some lonely sea-rock, he says to the sea, "Do your worst. I'm going to stick right here until this light is built, if it takes a hundred years." And his men are always on hand in fair weather or foul, dropping one stone to-day and another to-morrow, and succeeding by virtue of steady grit and patience. The builder of the iron cylinder light pursues an exactly opposite course. His warfare is more spirited, more modern. He stakes his whole success on a single desperate throw. If he fails, he loses everything: if he wins, he may throw again. His lighthouse is built, from foundation caisson to lantern, a hundred or a thousand miles away from the reef where it is finally to rest. It is simply an enormous cast-iron tube made in sections or courses, each about six feet high, not unlike the standpipe of a village water-works. The builder must set up this tube on the shoal, sink it deep into the sand bottom, and fill it with rocks and concrete mortar, so that it will not tip over. At first such a feat would seem absolutely impossible; but the sea-builder has his own methods of fighting. With all the material necessary to his work, he creeps up on the shoal and lies quietly in some secluded harbour until the sea is calmly at rest, suspecting no attack. Then he darts out with his whole fleet, plants his foundation, and before the waves and the wind wake up he has established his outworks on the shoal. The story of the construction of one of these lighthouses will give a good idea of the terrible difficulties which their builders must overcome.
Not long ago W. H. Flaherty, of New York, built such a lighthouse at Smith's Point, in Chesapeake Bay. At the mouth of the Potomac River the opposing tides and currents have built up shoals of sand extending eight or ten miles out into the bay. Here the waves, sweeping in from the open Atlantic, sometimes drown the side-lights of the big Boston steamers. The point has a grim story of wrecks and loss of life; in 1897 alone, four sea-craft were driven in and swamped on the shoals. The Lighthouse Establishment planned to set up the light just at the edge of the channel, and 120 miles south of Baltimore.
Eighty thousand dollars was appropriated for doing the work. In August, 1896, the contractors formally agreed to build the lighthouse for $56,000, and, more than that, to have the lantern burning within a single year.
By the last of September a huge, unwieldy foundation caisson was framing in a Baltimore shipyard. This caisson was a bottomless wooden box, 32 feet square and 12 feet high, with the top nearly as thick as the height of a man, so that it would easily sustain the weight of the great iron cylinder soon to be placed upon it. It was lined and caulked, painted inside and out to make it air-tight and water-tight, and then dragged out into the bay, together with half an acre of mud and dock timbers. Here the workmen crowned it with the first two courses of the iron cylinder – a collar 30 feet in diameter and about 12 feet high. Inside of this a second cylinder, a steel air-shaft, five feet in diameter, rose from a hole in the centre of the caisson, this providing a means of entrance and exit when the structure should reach the shoal.
Upon the addition of this vast weight of iron and steel, the wooden caisson, although it weighed nearly a hundred tons, disappeared completely under the water, leaving in view only the great black rim of the iron cylinder and the top of the air-shaft.
On April 7th of the next year the fleet was ready to start on its voyage of conquest. The whole country had contributed to the expedition. Cleveland, O., furnished the iron plates for the tower; Pittsburg sent steel and machinery; South Carolina supplied the enormous yellow-pine timbers for the caisson; Washington provided two great barge-loads of stone; and New York City contributed hundreds of tons of Portland cement and sand and gravel, it being cheaper to bring even such supplies from the North than to gather them on the shores of the bay.
Everything necessary to the completion of the lighthouse and the maintenance of the eighty-eight men was loaded aboard ship. And quite a fleet it made as it lay out on the bay in the warm spring sunshine. The flagship was a big, double-deck steamer, 200 feet over all, once used in the coastwise trade. She was loaded close down to her white lines, and men lay over her rails in double rows. She led the fleet down the bay, and two tugs and seven barges followed in her wake like a flock of ducklings. The steamer towed the caisson at the end of a long hawser.
In three days the fleet reached the lighthouse site. During all of this time the sea had been calm, with only occasional puffs of wind, and the builders planned, somewhat exultantly, to drop the caisson the moment they arrived.
But before they were well in sight of the point, the sea awakened suddenly, as if conscious of the planned surprise. A storm blew up in the north, and at sunset on the tenth of April the waves were washing over the top of the iron cylinder and slapping it about like a boy's raft. A few tons of water inside the structure would sink it entirely, and the builder would lose months of work and thousands of dollars.