Kitabı oku: «Are the Effects of Use and Disuse Inherited?», sayfa 6
MISCELLANEOUS CONSIDERATIONS
TRUE RELATION OF PARENTS AND OFFSPRING
It is difficult to entirely free ourselves from the flattering and almost universal idea that parents are true originators or creators of copies of themselves. But the main truth, if not the whole truth, is that they are merely the transmitters of types of which they and their offspring are alike more or less similarly moulded resultants. A parent is a trustee. He transmits, not himself and his own modifications, but the stock, the type, the representative elements, of which he is a product and a custodian in one. It seems probable that he has no more definite or "particulate" influence over the reproductive elements within him than a mother over the embryo or a vessel over its cargo. Parent and offspring are like successive copies of books printed from the same "type." A battered letter in the "type" will display its effects in both earlier and later copies alike, but a purely extraneous or acquired flaw in the first copy is not necessarily repeated in subsequent copies. Unlike printer's type, however, the material source of heredity is of a fluctuating nature, consisting of competing elements derived from two parents and from innumerable ancestors.
Galton compares parent and child to successive pendants on the same chain. Weismann likens them to successive offshoots thrown up by a long underground root or sucker. Such comparisons indicate the improbability of acquired modifications being transmitted to offspring.
That parts are developed in offspring independently of those parts in parents is clear. Mutilated parents transmit parts which they do not possess. The offspring of young parents cannot inherit the later stages of life from parents who have not passed through them. Cases of remote reversion or atavism show that ancestral peculiarities can transmit themselves in a latent or undeveloped condition for hundreds or thousands of generations. Many obvious facts compelled Darwin to suppose that vast numbers of the reproductive gemmules in an individual are not thrown off by his own cells, but are the self-multiplying progeny of ancestral gemmules. Galton restricts the production of gemmules by the personal structure to a few exceptional cases, and would evidently like to dispense with pangenesis altogether, if he could only be sure that acquired characters are never inherited. Weismann entirely rejects pangenesis and the inheritance of acquired characters. This enables him to explain heredity by his theory of the "Continuity of the Germ-plasm."67 Parent and offspring are alike successive products or offshoots of this persistent germ-substance, which obviously would not be correspondingly affected by modifications of parts in parents, and so would render the transmission of acquired characters impossible.
INVERSE INHERITANCE
Mr. Galton contends that the reproductive elements become sterile when used in forming and maintaining the individual, and that only a small proportion of them are so used.68 He holds that the next generation will be formed entirely, or almost entirely, from the residue of undeveloped germs, which, not having been employed in the structure and work of the individual, have been free to multiply and form the reproductive elements whence future individuals are derived. Hence the singular inferiority not infrequently displayed by the children of men of extraordinary genius, especially where the ancestry has been only of a mediocre ability. The valuable germs have been used up in the individual, and rendered sterile in the structure of his person. Hence, too, the "strong tendency to deterioration in the transmission of every exceptionally gifted race." Mr. Galton's hypothesis "explains the fact of certain diseases skipping one or more generations," and it "agrees singularly well with many classes of fact;" and it is strongly opposed to the theory of use-inheritance. The elements which are used die almost universally without germ progeny: the germs which are not used are the great source of posterity. Hence, when the germs or gemmules which achieve development are either better or worse than the residue, the qualities transmitted to offspring will be of an inverse character. If brain-work attracts, develops and sterilizes the best gemmules, the ultimate effect of education on the intellect of posterity may differ from its immediate effect.
EARLY ORIGIN OF THE OVA
As the ova are formed at as early a period as the rest of the maternal structure, Galton notices that it seems improbable that they would be correspondingly affected by subsequent modifications of parental structure. Of course it is not certain that this is a valid argument. We know that the paternal half of the reproductive elements does not enter the ovum till a comparatively late stage in its history, and it is quite possible that maternal elements or gemmules may also enter the ovum from without. If reproductive elements were confined to one special part or organ, we should be unable to explain the reproduction of lost limbs in salamanders, and the persistent effect of intercrossing on subsequent issue by the same mother, and the propagation of plants from shoots, or of the begonia from minute fragments of leaves, or the development of small pieces of water-worms into complete animals.
MARKED EFFECTS OF USE AND DISUSE ON THE INDIVIDUAL
These are, to some extent, an argument against the cumulative inheritance of such effects. When a nerve atrophies from disuse, or a duct shrivels, or bone is absorbed, or a muscle becomes small or flabby, it proves, so far, that the average effect of use through enormous ages is not transmitted. When the fibula of a dog's leg thickens by 400 per cent. to a size "equal to or greater than" that of the removed tibia which previously did the work,69 it shows that in spite of disuse for countless generations, the "almost filiform" bone has retained a potentiality of development which is fully equal to that possessed by the larger one which has been constantly used. When, after being reared on the ailanthus, the caterpillars of the Bombyx hesperus die of hunger rather than return to their natural food, the inherited effect of ancestral habit does not seem to be particularly strong. Neither is there any strongly-inherited effect of long-continued ancestral wildness in many animals which are easily tamed.
WOULD NATURAL SELECTION FAVOUR USE-INHERITANCE?
If use-inheritance is really one of the factors of evolution, it is certainly a subordinate one, and an utterly helpless one, whenever it comes into conflict with the great ruling principle of Selection. Would this dominant cause of evolution have favoured a tendency to use-inheritance if such had appeared, or would it have discouraged and destroyed it? We have already seen that use-inheritance is unnecessary, since natural selection will be far more effective in bringing about advantageous modifications; and if it can be shown that use-inheritance would often be an evil, it then becomes probable that on the whole natural selection would more strongly discourage and eliminate it as a hostile factor than it might occasionally favour such a tendency as a totally unnecessary aid.
USE-INHERITANCE AN EVIL
Use-inheritance would crudely and indiscriminately proportion parts to actual work done – or rather to the varying nourishment and growth resulting from a multiplicity of causes – and this in its various details would often conflict most seriously with the real necessities of the case, such as occasional passive strength, or appropriate shape, lightness and general adaptation. If its accumulated effects were not corrected by natural or sexual selection, horns and antlers would disappear in favour of enlarged hoofs. The elephant's tusks would become smaller than its teeth. Men would have callosities for sitting on, like certain monkeys, and huge corns or hoofs for walking on. Bones would often be modified disastrously. Thus the condyle of the human jaw would become larger than the body of the jaw, because as the fulcrum of the lever it receives more pressure. Some organs (like the heart, which is always at work) would become inconveniently or unnecessarily large. Other absolutely indispensable organs, which are comparatively passive or are very seldom used, would dwindle until their weakness caused the ruin of the individual or the extinction of the species. In eliminating various evil results of use-inheritance, natural selection would be eliminating use-inheritance itself. The displacement of Lamarck's theory by Darwin's shows that the effects of use-inheritance often differ from those required by natural selection; and it is clear that the latter factor must at least have reduced use-inheritance to the very minor position of comparative feebleness and harmlessness assigned to it by Darwin.
Use-inheritance would be ruinous through causing unequal variation in co-operative parts – of which Mr. Spencer may accept his own instances of the jaws and teeth, and the cave-crab's lost eyes and persistent eye-stalks, as typical examples. That the variation would be unequal seems almost self-evident from the varying rapidity and extent of the effects of use and disuse on different tissues and on different parts of the general structure. The optic nerve may atrophy in a few months from disuse consequent on the loss of the eye. Some of the bones of the rudimentary hind legs of the whale are still in existence after disuse for an enormous period. Evidently use-inheritance could not equally modify the turtle and its shell, or the brain and its skull; and in minor matters there would be the same incongruity of effect. Thus, if the molar teeth lengthened from extra use the incisors could not meet. Unequal and indiscriminate variation would throw the machinery of the organism out of gear in innumerable ways.
Use-inheritance would perpetuate various evils. We are taught, for instance, that it perpetuates short-sight, inferior senses, epilepsy, insanity, nervous disorders, and so forth. It would apparently transmit the evil effects of over-exertion, disuse, hardship, exposure, disease and accident, as well as the defects of age or immaturity.
Would it not be better on the whole if each individual took a fresh start as far as possible on the advantageous typical lines laid down by natural selection? Through the long stages of evolution from primæval protoplasm upwards, such species as were least affected by use-inheritance would be most free to develop necessary but seldom-used organs, protective coverings such as shells or skulls, and natural weapons, defences, ornaments, special adaptations, and so forth; and this would be an advantage – for survival would obviously depend on the importance of a structure or faculty in deciding the struggle for existence and reproduction, and not on the total amount of its using or nourishment. If natural selection had on the whole favoured this officious ally and frequent enemy, surely we should find better evidence of its existence.
Without laying undue stress upon the evil effects of use-inheritance, a careful examination of them in detail may at least serve to counter-balance the optimistic a priori arguments for belief in that plausible but unproven factor of evolution.
The benefits derivable from use-inheritance are largely illusory. The effects of use, indeed, are generally beneficial up to a certain point; for natural selection has sanctioned or evolved organs which possess the property or potentiality of developing to the right extent under the stimulus of use or nourishment. But use-inheritance would cumulatively alter this individual adaptability, and would tend to fix the size of organs by the average amount of ancestral use or disuse rather than by the actual requirements of the individual. Of course under changed conditions involving increased or lessened use of parts it might become advantageous; but even here it may prove a decided hindrance to adaptive evolution in some respects as well as an unnecessary aid in others. Thus in the case of animals becoming heavier, or walking more, it would lengthen the legs although natural selection might require them to be shortened. In the Aylesbury duck and the Call duck, if use-inheritance has increased the dimensions of the bones and tendons of the leg, natural selection has had to counteract this increase so far as length is concerned, and to effect 8 per cent. of shortening besides. If use-inheritance thickens bones without proportionally lengthening them, it would hinder rather than help the evolution of such structures as the long light wings of birds, or the long legs and neck of the giraffe or crane.
VARIED EFFECTS OF USE AND DISUSE
The changes which we somewhat roughly and empirically group together as the effects of "use and disuse" are of widely diverse character. Thus bone, as the physiological fact, thickens under alternations of pressure (and the consequent increased flow of nourishment), but atrophies under a steadily continued pressure; so that if the use of a bone involved continuous pressure, the effect of such use would be a partial or total absorption of that bone. Darwin shows that bone lengthens as well as thickens from carrying a greater weight, while tension (as seen in sailors' arms, which are used in pulling) appears to have an equally marked effect in shortening bones (Descent of Man, p. 32). Thus different kinds of use may produce opposite results. The cumulative inheritance of such effects would often be mischievous. The limbs of the sloth and the prehensile tail of the spider monkey would continually grow shorter, while the legs of the evolving elephant or rhinoceros might lengthen to an undesirable extent. Such cumulative tendencies of use-inheritance, if they exist, are obviously well kept under by natural selection.
Although the ultimate effect of use is generally growth or enlargement through increased flow of blood, the first effect usually is a loss of substance, and a consequent diminution of size and strength. When the loss exceeds the growth, use will diminish or deteriorate the part used, while disuse would enlarge or perfect it. Teeth, claws, nails, skin, hair, hoofs, feathers, &c., may thus be worn away faster than they can renew themselves. But this wearing away usually stimulates the repairing process, and so increases the rate of growth; that is, it will increase the size produced, if not the size retained. Which effect of use does use-inheritance transmit in such cases – the increased rate of growth, or the dilapidation of the worn-out parts? We can hardly suppose that both these effects of use will be inherited. Would shaving destroy the beard in time or strengthen it? Will the continued shearing of sheep increase or lessen the growth of wool? What will be the ultimate effect of plucking geese's quills, and of the eider duck's abstraction of the down from her breast? If the mutilated parts grow stronger or more abundantly, why were the motmot's feathers alleged to be narrowed by the inherited effects of ancestral nibbling?
The "use" or "work" or "function" of muscles, nerves, bones, teeth, skin, tendon, glands, ducts, eyes, blood corpuscles, cilia, and the other constituents of the organism, is as widely different as the various parts are from each other, and the effects of their use or disuse are equally varied and complicated.
USE-INHERITANCE IMPLIES PANGENESIS
How could the transmission of these varied effects to offspring be accounted for? Is it possible to believe, with Mr. Spencer, that the effects of use and disuse on the parts of the personal structure are simultaneously registered in corresponding impressions on the seminal germs? Must we not feel, with Darwin apparently,70 that the only intelligible explanation of use-inheritance is the hypothesis of Pangenesis, according to which each modified cell, or physiological unit, throws off similarly-modified gemmules or parts of itself, which ultimately reproduce the change in offspring? If we reject pangenesis, it becomes difficult to see how use-inheritance can be possible.
PANGENESIS IMPROBABLE
The more important and best-known phenomena of heredity do not require any such hypothesis, and leading facts (such as atavism, transmission of lost parts, and the general non-transmission of acquired characters) are so adverse to it that Darwin has to concede that many of the reproductive gemmules are atavistic, and that by continuous self-multiplication they may preserve a practical "continuity of germ-substance," as Weismann would term it. The idea that the relationship of offspring to parent is one of direct descent is, as Galton tells us, "wholly untenable"; and the only reason he admits some supplementary traces of pangenesis into his "Theory of Heredity,"71 is that he may thus account for the more or less questionable cases of the transmission of acquired characters. But there appears to be no necessity even for this concession. We ought therefore to dispense with the useless and gratuitous hypothesis that cells multiply by throwing off minute self-multiplying gemmules, as well as by the well-known method of self-division. If pangenesis occurs, the transmission of acquired characters ought to be a prominent fact. The size, strength, health and other good or evil qualities of the cells could hardly fail to exercise a marked and corresponding effect upon the size and quality of the reproductive gemmules thrown off by those cells. The direct evidence tends to show that these free gemmules do not exist. Transfusion of blood has failed to affect inheritance in the slightest degree. Pangenesis, with its attraction of gemmules from all parts of the body into the germ-cells, and the free circulation of gemmules in the offspring till they hit upon or are attracted by the particular cell or cells, with which alone they can readily unite, seems a less feasible theory and less in conformity with the whole of the facts than an hypothesis of germ-continuity which supposes that the development of the germ-plasm and of the successive self-dividing cells of the body proceeds from within. Darwin's keen analogy of the fertilization of plants by pollen renders development from without conceivable, but as there are no insects to convey gemmules to their destination, each kind of gemmule would have to be exceedingly numerous and easily attracted from amongst an inconceivable number of other gemmules. Arguments against pangenesis can also be drawn from the case of neuter insects – a fact which seems to have escaped Darwin's notice, although he had seen how strongly that case was opposed to the doctrine which is the essential basis of the theory of pangenesis.