Sadece LitRes`te okuyun

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «The Descent of Man, and Selection in Relation to Sex», sayfa 3

Yazı tipi:

The bearing of the three great classes of facts now given is unmistakeable. But it would be superfluous fully to recapitulate the line of argument given in detail in my 'Origin of Species.' The homological construction of the whole frame in the members of the same class is intelligible, if we admit their descent from a common progenitor, together with their subsequent adaptation to diversified conditions. On any other view, the similarity of pattern between the hand of a man or monkey, the foot of a horse, the flipper of a seal, the wing of a bat, etc., is utterly inexplicable. (56. Prof. Bianconi, in a recently published work, illustrated by admirable engravings ('La Théorie Darwinienne et la création dite indépendante,' 1874), endeavours to shew that homological structures, in the above and other cases, can be fully explained on mechanical principles, in accordance with their uses. No one has shewn so well, how admirably such structures are adapted for their final purpose; and this adaptation can, as I believe, be explained through natural selection. In considering the wing of a bat, he brings forward (p. 218) what appears to me (to use Auguste Comte's words) a mere metaphysical principle, namely, the preservation "in its integrity of the mammalian nature of the animal." In only a few cases does he discuss rudiments, and then only those parts which are partially rudimentary, such as the little hoofs of the pig and ox, which do not touch the ground; these he shews clearly to be of service to the animal. It is unfortunate that he did not consider such cases as the minute teeth, which never cut through the jaw in the ox, or the mammae of male quadrupeds, or the wings of certain beetles, existing under the soldered wing-covers, or the vestiges of the pistil and stamens in various flowers, and many other such cases. Although I greatly admire Prof. Bianconi's work, yet the belief now held by most naturalists seems to me left unshaken, that homological structures are inexplicable on the principle of mere adaptation.) It is no scientific explanation to assert that they have all been formed on the same ideal plan. With respect to development, we can clearly understand, on the principle of variations supervening at a rather late embryonic period, and being inherited at a corresponding period, how it is that the embryos of wonderfully different forms should still retain, more or less perfectly, the structure of their common progenitor. No other explanation has ever been given of the marvellous fact that the embryos of a man, dog, seal, bat, reptile, etc., can at first hardly be distinguished from each other. In order to understand the existence of rudimentary organs, we have only to suppose that a former progenitor possessed the parts in question in a perfect state, and that under changed habits of life they became greatly reduced, either from simple disuse, or through the natural selection of those individuals which were least encumbered with a superfluous part, aided by the other means previously indicated.

Thus we can understand how it has come to pass that man and all other vertebrate animals have been constructed on the same general model, why they pass through the same early stages of development, and why they retain certain rudiments in common. Consequently we ought frankly to admit their community of descent: to take any other view, is to admit that our own structure, and that of all the animals around us, is a mere snare laid to entrap our judgment. This conclusion is greatly strengthened, if we look to the members of the whole animal series, and consider the evidence derived from their affinities or classification, their geographical distribution and geological succession. It is only our natural prejudice, and that arrogance which made our forefathers declare that they were descended from demi-gods, which leads us to demur to this conclusion. But the time will before long come, when it will be thought wonderful that naturalists, who were well acquainted with the comparative structure and development of man, and other mammals, should have believed that each was the work of a separate act of creation.

CHAPTER II

ON THE MANNER OF DEVELOPMENT OF MAN FROM SOME LOWER FORM

Variability of body and mind in man – Inheritance – Causes of variability – Laws of variation the same in man as in the lower animals – Direct action of the conditions of life – Effects of the increased use and disuse of parts – Arrested development – Reversion – Correlated variation – Rate of increase – Checks to increase – Natural selection – Man the most dominant animal in the world – Importance of his corporeal structure – The causes which have led to his becoming erect – Consequent changes of structure – Decrease in size of the canine teeth – Increased size and altered shape of the skull – Nakedness – Absence of a tail – Defenceless condition of man.

It is manifest that man is now subject to much variability. No two individuals of the same race are quite alike. We may compare millions of faces, and each will be distinct. There is an equally great amount of diversity in the proportions and dimensions of the various parts of the body; the length of the legs being one of the most variable points. (1. 'Investigations in Military and Anthropological Statistics of American Soldiers,' by B.A. Gould, 1869, p. 256.) Although in some quarters of the world an elongated skull, and in other quarters a short skull prevails, yet there is great diversity of shape even within the limits of the same race, as with the aborigines of America and South Australia – the latter a race "probably as pure and homogeneous in blood, customs, and language as any in existence" – and even with the inhabitants of so confined an area as the Sandwich Islands. (2. With respect to the "Cranial forms of the American aborigines," see Dr. Aitken Meigs in 'Proc. Acad. Nat. Sci.' Philadelphia, May 1868. On the Australians, see Huxley, in Lyell's 'Antiquity of Man,' 1863, p. 87. On the Sandwich Islanders, Prof. J. Wyman, 'Observations on Crania,' Boston, 1868, p. 18.) An eminent dentist assures me that there is nearly as much diversity in the teeth as in the features. The chief arteries so frequently run in abnormal courses, that it has been found useful for surgical purposes to calculate from 1040 corpses how often each course prevails. (3. 'Anatomy of the Arteries,' by R. Quain. Preface, vol. i. 1844.) The muscles are eminently variable: thus those of the foot were found by Prof. Turner (4. 'Transactions of the Royal Society of Edinburgh,' vol. xxiv. pp. 175, 189.) not to be strictly alike in any two out of fifty bodies; and in some the deviations were considerable. He adds, that the power of performing the appropriate movements must have been modified in accordance with the several deviations. Mr. J. Wood has recorded (5. 'Proceedings Royal Society,' 1867, p. 544; also 1868, pp. 483, 524. There is a previous paper, 1866, p. 229.) the occurrence of 295 muscular variations in thirty-six subjects, and in another set of the same number no less than 558 variations, those occurring on both sides of the body being only reckoned as one. In the last set, not one body out of the thirty-six was "found totally wanting in departures from the standard descriptions of the muscular system given in anatomical text books." A single body presented the extraordinary number of twenty-five distinct abnormalities. The same muscle sometimes varies in many ways: thus Prof. Macalister describes (6. 'Proc. R. Irish Academy,' vol. x. 1868, p. 141.) no less than twenty distinct variations in the palmaris accessorius.

The famous old anatomist, Wolff (7. 'Act. Acad. St. Petersburg,' 1778, part ii. p. 217.), insists that the internal viscera are more variable than the external parts: Nulla particula est quae non aliter et aliter in aliis se habeat hominibus. He has even written a treatise on the choice of typical examples of the viscera for representation. A discussion on the beau-ideal of the liver, lungs, kidneys, etc., as of the human face divine, sounds strange in our ears.

The variability or diversity of the mental faculties in men of the same race, not to mention the greater differences between the men of distinct races, is so notorious that not a word need here be said. So it is with the lower animals. All who have had charge of menageries admit this fact, and we see it plainly in our dogs and other domestic animals. Brehm especially insists that each individual monkey of those which he kept tame in Africa had its own peculiar disposition and temper: he mentions one baboon remarkable for its high intelligence; and the keepers in the Zoological Gardens pointed out to me a monkey, belonging to the New World division, equally remarkable for intelligence. Rengger, also, insists on the diversity in the various mental characters of the monkeys of the same species which he kept in Paraguay; and this diversity, as he adds, is partly innate, and partly the result of the manner in which they have been treated or educated. (8. Brehm, 'Thierleben,' B. i. ss. 58, 87. Rengger, 'Säugethiere von Paraguay,' s. 57.)

I have elsewhere (9. 'Variation of Animals and Plants under Domestication,' vol. ii. chap. xii.) so fully discussed the subject of Inheritance, that I need here add hardly anything. A greater number of facts have been collected with respect to the transmission of the most trifling, as well as of the most important characters in man, than in any of the lower animals; though the facts are copious enough with respect to the latter. So in regard to mental qualities, their transmission is manifest in our dogs, horses, and other domestic animals. Besides special tastes and habits, general intelligence, courage, bad and good temper, etc., are certainly transmitted. With man we see similar facts in almost every family; and we now know, through the admirable labours of Mr. Galton (10. 'Hereditary Genius: an Inquiry into its Laws and Consequences,' 1869.), that genius which implies a wonderfully complex combination of high faculties, tends to be inherited; and, on the other hand, it is too certain that insanity and deteriorated mental powers likewise run in families.

With respect to the causes of variability, we are in all cases very ignorant; but we can see that in man as in the lower animals, they stand in some relation to the conditions to which each species has been exposed, during several generations. Domesticated animals vary more than those in a state of nature; and this is apparently due to the diversified and changing nature of the conditions to which they have been subjected. In this respect the different races of man resemble domesticated animals, and so do the individuals of the same race, when inhabiting a very wide area, like that of America. We see the influence of diversified conditions in the more civilised nations; for the members belonging to different grades of rank, and following different occupations, present a greater range of character than do the members of barbarous nations. But the uniformity of savages has often been exaggerated, and in some cases can hardly be said to exist. (11. Mr. Bates remarks ('The Naturalist on the Amazons,' 1863, vol. ii p. 159), with respect to the Indians of the same South American tribe, "no two of them were at all similar in the shape of the head; one man had an oval visage with fine features, and another was quite Mongolian in breadth and prominence of cheek, spread of nostrils, and obliquity of eyes.") It is, nevertheless, an error to speak of man, even if we look only to the conditions to which he has been exposed, as "far more domesticated" (12. Blumenbach, 'Treatises on Anthropology.' Eng. translat., 1865, p. 205.) than any other animal. Some savage races, such as the Australians, are not exposed to more diversified conditions than are many species which have a wide range. In another and much more important respect, man differs widely from any strictly domesticated animal; for his breeding has never long been controlled, either by methodical or unconscious selection. No race or body of men has been so completely subjugated by other men, as that certain individuals should be preserved, and thus unconsciously selected, from somehow excelling in utility to their masters. Nor have certain male and female individuals been intentionally picked out and matched, except in the well-known case of the Prussian grenadiers; and in this case man obeyed, as might have been expected, the law of methodical selection; for it is asserted that many tall men were reared in the villages inhabited by the grenadiers and their tall wives. In Sparta, also, a form of selection was followed, for it was enacted that all children should be examined shortly after birth; the well-formed and vigorous being preserved, the others left to perish. (13. Mitford's 'History of Greece,' vol. i. p. 282. It appears also from a passage in Xenophon's 'Memorabilia,' B. ii. 4 (to which my attention has been called by the Rev. J.N. Hoare), that it was a well recognised principle with the Greeks, that men ought to select their wives with a view to the health and vigour of their children. The Grecian poet, Theognis, who lived 550 B.C., clearly saw how important selection, if carefully applied, would be for the improvement of mankind. He saw, likewise, that wealth often checks the proper action of sexual selection. He thus writes:

 
"With kine and horses, Kurnus! we proceed
By reasonable rules, and choose a breed
For profit and increase, at any price:
Of a sound stock, without defect or vice.
But, in the daily matches that we make,
The price is everything: for money's sake,
Men marry: women are in marriage given
The churl or ruffian, that in wealth has thriven,
May match his offspring with the proudest race:
Thus everything is mix'd, noble and base!
If then in outward manner, form, and mind,
You find us a degraded, motley kind,
Wonder no more, my friend! the cause is plain,
And to lament the consequence is vain."
 

(The Works of J. Hookham Frere, vol. ii. 1872, p. 334.))

If we consider all the races of man as forming a single species, his range is enormous; but some separate races, as the Americans and Polynesians, have very wide ranges. It is a well-known law that widely-ranging species are much more variable than species with restricted ranges; and the variability of man may with more truth be compared with that of widely- ranging species, than with that of domesticated animals.

Not only does variability appear to be induced in man and the lower animals by the same general causes, but in both the same parts of the body are affected in a closely analogous manner. This has been proved in such full detail by Godron and Quatrefages, that I need here only refer to their works. (14. Godron, 'De l'Espèce,' 1859, tom. ii. livre 3. Quatrefages, 'Unité de l'Espèce Humaine,' 1861. Also Lectures on Anthropology, given in the 'Revue des Cours Scientifiques,' 1866-1868.) Monstrosities, which graduate into slight variations, are likewise so similar in man and the lower animals, that the same classification and the same terms can be used for both, as has been shewn by Isidore Geoffroy St. – Hilaire. (15. 'Hist. Gen. et Part. des Anomalies de l'Organisation,' in three volumes, tom. i. 1832.) In my work on the variation of domestic animals, I have attempted to arrange in a rude fashion the laws of variation under the following heads: – The direct and definite action of changed conditions, as exhibited by all or nearly all the individuals of the same species, varying in the same manner under the same circumstances. The effects of the long- continued use or disuse of parts. The cohesion of homologous parts. The variability of multiple parts. Compensation of growth; but of this law I have found no good instance in the case of man. The effects of the mechanical pressure of one part on another; as of the pelvis on the cranium of the infant in the womb. Arrests of development, leading to the diminution or suppression of parts. The reappearance of long-lost characters through reversion. And lastly, correlated variation. All these so-called laws apply equally to man and the lower animals; and most of them even to plants. It would be superfluous here to discuss all of them (16. I have fully discussed these laws in my 'Variation of Animals and Plants under Domestication,' vol. ii. chap. xxii. and xxiii. M. J.P. Durand has lately (1868) published a valuable essay, 'De l'Influence des Milieux,' etc. He lays much stress, in the case of plants, on the nature of the soil.); but several are so important, that they must be treated at considerable length.

THE DIRECT AND DEFINITE ACTION OF CHANGED CONDITIONS

This is a most perplexing subject. It cannot be denied that changed conditions produce some, and occasionally a considerable effect, on organisms of all kinds; and it seems at first probable that if sufficient time were allowed this would be the invariable result. But I have failed to obtain clear evidence in favour of this conclusion; and valid reasons may be urged on the other side, at least as far as the innumerable structures are concerned, which are adapted for special ends. There can, however, be no doubt that changed conditions induce an almost indefinite amount of fluctuating variability, by which the whole organisation is rendered in some degree plastic.

In the United States, above 1,000,000 soldiers, who served in the late war, were measured, and the States in which they were born and reared were recorded. (17. 'Investigations in Military and Anthrop. Statistics,' etc., 1869, by B.A. Gould, pp. 93, 107, 126, 131, 134.) From this astonishing number of observations it is proved that local influences of some kind act directly on stature; and we further learn that "the State where the physical growth has in great measure taken place, and the State of birth, which indicates the ancestry, seem to exert a marked influence on the stature." For instance, it is established, "that residence in the Western States, during the years of growth, tends to produce increase of stature." On the other hand, it is certain that with sailors, their life delays growth, as shewn "by the great difference between the statures of soldiers and sailors at the ages of seventeen and eighteen years." Mr. B.A. Gould endeavoured to ascertain the nature of the influences which thus act on stature; but he arrived only at negative results, namely that they did not relate to climate, the elevation of the land, soil, nor even "in any controlling degree" to the abundance or the need of the comforts of life. This latter conclusion is directly opposed to that arrived at by Villerme, from the statistics of the height of the conscripts in different parts of France. When we compare the differences in stature between the Polynesian chiefs and the lower orders within the same islands, or between the inhabitants of the fertile volcanic and low barren coral islands of the same ocean (18. For the Polynesians, see Prichard's 'Physical History of Mankind,' vol. v. 1847, pp. 145, 283. Also Godron, 'De l'Espèce,' tom. ii. p. 289. There is also a remarkable difference in appearance between the closely-allied Hindoos inhabiting the Upper Ganges and Bengal; see Elphinstone's 'History of India,' vol. i. p. 324.) or again between the Fuegians on the eastern and western shores of their country, where the means of subsistence are very different, it is scarcely possible to avoid the conclusion that better food and greater comfort do influence stature. But the preceding statements shew how difficult it is to arrive at any precise result. Dr. Beddoe has lately proved that, with the inhabitants of Britain, residence in towns and certain occupations have a deteriorating influence on height; and he infers that the result is to a certain extent inherited, as is likewise the case in the United States. Dr. Beddoe further believes that wherever a "race attains its maximum of physical development, it rises highest in energy and moral vigour." (19. 'Memoirs, Anthropological Society,' vol. iii. 1867-69, pp. 561, 565, 567.)

Whether external conditions produce any other direct effect on man is not known. It might have been expected that differences of climate would have had a marked influence, inasmuch as the lungs and kidneys are brought into activity under a low temperature, and the liver and skin under a high one. (20. Dr. Brakenridge, 'Theory of Diathesis,' 'Medical Times,' June 19 and July 17, 1869.) It was formerly thought that the colour of the skin and the character of the hair were determined by light or heat; and although it can hardly be denied that some effect is thus produced, almost all observers now agree that the effect has been very small, even after exposure during many ages. But this subject will be more properly discussed when we treat of the different races of mankind. With our domestic animals there are grounds for believing that cold and damp directly affect the growth of the hair; but I have not met with any evidence on this head in the case of man.

EFFECTS OF THE INCREASED USE AND DISUSE OF PARTS

It is well known that use strengthens the muscles in the individual, and complete disuse, or the destruction of the proper nerve, weakens them. When the eye is destroyed, the optic nerve often becomes atrophied. When an artery is tied, the lateral channels increase not only in diameter, but in the thickness and strength of their coats. When one kidney ceases to act from disease, the other increases in size, and does double work. Bones increase not only in thickness, but in length, from carrying a greater weight. (21. I have given authorities for these several statements in my 'Variation of Animals and Plants under Domestication,' vol. ii. pp. 297- 300. Dr. Jaeger, "Über das Langenwachsthum der Knochen," 'Jenäischen Zeitschrift,' B. v. Heft. i.) Different occupations, habitually followed, lead to changed proportions in various parts of the body. Thus it was ascertained by the United States Commission (22. 'Investigations,' etc., by B.A. Gould, 1869, p. 288.) that the legs of the sailors employed in the late war were longer by 0.217 of an inch than those of the soldiers, though the sailors were on an average shorter men; whilst their arms were shorter by 1.09 of an inch, and therefore, out of proportion, shorter in relation to their lesser height. This shortness of the arms is apparently due to their greater use, and is an unexpected result: but sailors chiefly use their arms in pulling, and not in supporting weights. With sailors, the girth of the neck and the depth of the instep are greater, whilst the circumference of the chest, waist, and hips is less, than in soldiers.

Whether the several foregoing modifications would become hereditary, if the same habits of life were followed during many generations, is not known, but it is probable. Rengger (23. 'Säugethiere von Paraguay,' 1830, s. 4.) attributes the thin legs and thick arms of the Payaguas Indians to successive generations having passed nearly their whole lives in canoes, with their lower extremities motionless. Other writers have come to a similar conclusion in analogous cases. According to Cranz (24. 'History of Greenland,' Eng. translat., 1767, vol. i. p. 230.), who lived for a long time with the Esquimaux, "the natives believe that ingenuity and dexterity in seal-catching (their highest art and virtue) is hereditary; there is really something in it, for the son of a celebrated seal-catcher will distinguish himself, though he lost his father in childhood." But in this case it is mental aptitude, quite as much as bodily structure, which appears to be inherited. It is asserted that the hands of English labourers are at birth larger than those of the gentry. (25. 'Intermarriage,' by Alex. Walker, 1838, p. 377.) From the correlation which exists, at least in some cases (26. 'The Variation of Animals under Domestication,' vol. i. p. 173.), between the development of the extremities and of the jaws, it is possible that in those classes which do not labour much with their hands and feet, the jaws would be reduced in size from this cause. That they are generally smaller in refined and civilised men than in hard-working men or savages, is certain. But with savages, as Mr. Herbert Spencer (27. 'Principles of Biology,' vol. i. p. 455.) has remarked, the greater use of the jaws in chewing coarse, uncooked food, would act in a direct manner on the masticatory muscles, and on the bones to which they are attached. In infants, long before birth, the skin on the soles of the feet is thicker than on any other part of the body; (28. Paget, 'Lectures on Surgical Pathology,' vol. ii, 1853, p. 209.) and it can hardly be doubted that this is due to the inherited effects of pressure during a long series of generations.

It is familiar to every one that watchmakers and engravers are liable to be short-sighted, whilst men living much out of doors, and especially savages, are generally long-sighted. (29. It is a singular and unexpected fact that sailors are inferior to landsmen in their mean distance of distinct vision. Dr. B.A. Gould ('Sanitary Memoirs of the War of the Rebellion,' 1869, p. 530), has proved this to be the case; and he accounts for it by the ordinary range of vision in sailors being "restricted to the length of the vessel and the height of the masts.") Short-sight and long-sight certainly tend to be inherited. (30. 'The Variation of Animals under Domestication,' vol. i. p. 8.) The inferiority of Europeans, in comparison with savages, in eyesight and in the other senses, is no doubt the accumulated and transmitted effect of lessened use during many generations; for Rengger (31. 'Säugethiere von Paraguay,' s. 8, 10. I have had good opportunities for observing the extraordinary power of eyesight in the Fuegians. See also Lawrence ('Lectures on Physiology,' etc., 1822, p. 404) on this same subject. M. Giraud-Teulon has recently collected ('Revue des Cours Scientifiques,' 1870, p. 625) a large and valuable body of evidence proving that the cause of short-sight, "C'est le travail assidu, de près.") states that he has repeatedly observed Europeans, who had been brought up and spent their whole lives with the wild Indians, who nevertheless did not equal them in the sharpness of their senses. The same naturalist observes that the cavities in the skull for the reception of the several sense- organs are larger in the American aborigines than in Europeans; and this probably indicates a corresponding difference in the dimensions of the organs themselves. Blumenbach has also remarked on the large size of the nasal cavities in the skulls of the American aborigines, and connects this fact with their remarkably acute power of smell. The Mongolians of the plains of northern Asia, according to Pallas, have wonderfully perfect senses; and Prichard believes that the great breadth of their skulls across the zygomas follows from their highly-developed sense organs. (32. Prichard, 'Physical History of Mankind,' on the authority of Blumenbach, vol. i. 1851, p. 311; for the statement by Pallas, vol. iv. 1844, p. 407.)

The Quechua Indians inhabit the lofty plateaux of Peru; and Alcide d'Orbigny states (33. Quoted by Prichard, 'Researches into the Physical History of Mankind,' vol. v. p. 463.) that, from continually breathing a highly rarefied atmosphere, they have acquired chests and lungs of extraordinary dimensions. The cells, also, of the lungs are larger and more numerous than in Europeans. These observations have been doubted, but Mr. D. Forbes carefully measured many Aymaras, an allied race, living at the height of between 10,000 and 15,000 feet; and he informs me (34. Mr. Forbes' valuable paper is now published in the 'Journal of the Ethnological Society of London,' new series, vol. ii. 1870, p.193.) that they differ conspicuously from the men of all other races seen by him in the circumference and length of their bodies. In his table of measurements, the stature of each man is taken at 1000, and the other measurements are reduced to this standard. It is here seen that the extended arms of the Aymaras are shorter than those of Europeans, and much shorter than those of Negroes. The legs are likewise shorter; and they present this remarkable peculiarity, that in every Aymara measured, the femur is actually shorter than the tibia. On an average, the length of the femur to that of the tibia is as 211 to 252; whilst in two Europeans, measured at the same time, the femora to the tibiae were as 244 to 230; and in three Negroes as 258 to 241. The humerus is likewise shorter relatively to the forearm. This shortening of that part of the limb which is nearest to the body, appears to be, as suggested to me by Mr. Forbes, a case of compensation in relation with the greatly increased length of the trunk. The Aymaras present some other singular points of structure, for instance, the very small projection of the heel.

These men are so thoroughly acclimatised to their cold and lofty abode, that when formerly carried down by the Spaniards to the low eastern plains, and when now tempted down by high wages to the gold-washings, they suffer a frightful rate of mortality. Nevertheless Mr. Forbes found a few pure families which had survived during two generations: and he observed that they still inherited their characteristic peculiarities. But it was manifest, even without measurement, that these peculiarities had all decreased; and on measurement, their bodies were found not to be so much elongated as those of the men on the high plateau; whilst their femora had become somewhat lengthened, as had their tibiae, although in a less degree. The actual measurements may be seen by consulting Mr. Forbes's memoir. From these observations, there can, I think, be no doubt that residence during many generations at a great elevation tends, both directly and indirectly, to induce inherited modifications in the proportions of the body. (35. Dr. Wilckens ('Landwirthschaft. Wochenblatt,' No. 10, 1869) has lately published an interesting essay shewing how domestic animals, which live in mountainous regions, have their frames modified.)

Yaş sınırı:
12+
Litres'teki yayın tarihi:
01 kasım 2017
Hacim:
1030 s. 1 illüstrasyon
Telif hakkı:
Public Domain