Kitabı oku: «Town Geology», sayfa 4
He says: At the first glance, I can see symptoms a, b, c. It is therefore probable that my patient has got complaint A. But if he has he ought to have symptom d also. If I find that, my guess will be yet more probable. He ought also to have symptom e, and so forth; and as I find successively each of these symptoms which are proper to A, my first guess will become more and more probable, till it reaches practical certainty.
Now let us do the same, and say—If this strange dream be true, and the lowlands of the North were once under an icy sea, ought we not to find sea-shells in their sands and clays? Not abundantly, of course. We can understand that the sea-animals would be too rapidly covered up in mud, and too much disturbed by icebergs and boulders, to be very abundant. But still, some should surely be found here and there.
Doubtless; and if my northern-town readers will search the boulder-clay pits near them, they will most probably find a few shells, if not in the clay itself, yet in sand-beds mixed with them, and probably underlying them. And this is a notable fact, that the more species of shells they find, the more they will find—if they work out their names from any good book of conchology—of a northern type; of shells which notoriously, at this day, inhabit the colder seas.
It is impossible for me here to enter at length on a subject on which a whole literature has been already written. Those who wish to study it may find all that they need know, and more, in Lyell’s “Student’s Elements of Geology,” and in chapter xii. of his “Antiquity of Man.” They will find that if the evidence of scientific conchologists be worth anything, the period can be pointed out in the strata, though not of course in time, at which these seas began to grow colder, and southern and Mediterranean shells to disappear, their places being taken by shells of a temperate, and at last of an Arctic climate; which last have since retreated either toward their native North, or into cold water at great depths. From Essex across to Wales, from Wales to the æstuary of the Clyde, this fact has been verified again and again. And in the search for these shells, a fresh fact, and a most startling one, was discovered. They are to be found not only in the clay of the lowlands, but at considerable heights up the hills, showing that, at some time or other, these hills have been submerged beneath the sea.
Let me give one example, which any tourist into Wales may see for himself. Moel Tryfaen is a mountain over Carnarvon. Now perched on the side of that mountain, fourteen hundred feet above the present sea-level, is an ancient sea-beach, five-and-thirty feet thick, lying on great ice-scratched boulders, which again lie on the mountain slates. It was discovered by the late Mr. Trimmer, now, alas! lost to Geology. Out of that beach fifty-seven different species of shells have been taken; eleven of them are now exclusively Arctic, and not found in our seas; four of them are still common to the Arctic seas and to our own; and almost all the rest are northern shells.
Fourteen hundred feet above the present sea: and that, it must be understood, is not the greatest height at which such shells may be found hereafter. For, according to Professor Ramsay, drift of the same kind as that on Moel Tryfaen is found at a height of two thousand three hundred feet.
Now I ask my readers to use their common sense over this astounding fact—which, after all, is only one among hundreds; to let (as Mr. Matthew Arnold would well say) their “thought play freely” about it; and consider for themselves what those shells must mean. I say not may, but must, unless we are to believe in a “Deus quidam deceptor,” in a God who puts shells upon mountain-sides only to befool honest human beings, and gives men intellects which are worthless for even the simplest work. Those shells must mean that that mountain, and therefore the mountains round it, must have been once fourteen hundred feet at least lower than they are now. That the sea in which they were sunk was far colder than now. That icebergs brought and dropped boulders round their flanks. That upon those boulders a sea-beach formed, and that dead shells were beaten into it from a sea-bottom close by. That, and no less, Moel Tryfaen must mean.
But it must mean, also, a length of time which has been well called “appalling.” A length of time sufficient to let the mountain sink into the sea. Then length of time enough to enable those Arctic shells to crawl down from the northward, settle, and propagate themselves generation after generation; then length of time enough to uplift their dead remains, and the beach, and the boulders, and all Snowdonia, fourteen hundred feet into the air. And if anyone should object that the last upheaval may have been effected suddenly by a few tremendous earthquakes, we must answer—We have no proof of it. Earthquakes upheave lands now only by slight and intermittent upward pulses; nay, some lands we know to rise without any earthquake pulses, but by simple, slow, upward swelling of a few feet in a century; and we have no reason, and therefore no right, to suppose that Snowdonia was upheaved by any means or at any rate which we do not witness now; and therefore we are bound to allow, not only that there was a past “age of ice,” but that that age was one of altogether enormous duration.
But meanwhile some of you, I presume, will be ready to cry—Stop! It may be our own weakness; but you are really going on too fast and too far for our small imaginations. Have you not played with us, as well as argued with us, till you have inveigled us step by step into a conclusion which we cannot and will not believe? That all this land should have been sunk beneath an icy sea? That Britain should have been as Greenland is now? We can’t believe it, and we won’t.
If you say so, like stout common-sense Britons, who have a wholesome dread of being taken in with fine words and wild speculations, I assure you I shall not laugh at you even in private. On the contrary, I shall say—what I am sure every scientific man will say—So much the better. That is the sort of audience which we want, if we are teaching natural science. We do not want haste, enthusiasm, gobe-moucherie, as the French call it, which is agape to snap up any new and vast fancy, just because it is new and vast. We want our readers to be slow, suspicious, conservative, ready to “gib,” as we say of a horse, and refuse the collar up a steep place, saying—I must stop and think. I don’t like the look of the path ahead of me. It seems an ugly place to get up. I don’t know this road, and I shall not hurry over it. I must go back a few steps, and make sure. I must see whether it is the right road; whether there are not other roads, a dozen of them perhaps, which would do as well and better than this.
This is the temper which finds out truth, slowly, but once and for all; and I shall be glad, not sorry, to see it in my readers.
And I am bound to say that it has been by that temper that this theory has been worked out, and the existence of this past age of ice, or glacial epoch, has been discovered, through many mistakes, many corrections, and many changes of opinion about details, for nearly forty years of hard work, by many men, in many lands.
As a very humble student of this subject, I may say that I have been looking these facts in the face earnestly enough for more than twenty years, and that I am about as certain that they can only be explained by ice, as I am that my having got home by rail can only be explained by steam.
But I think I know what startles you. It is the being asked to believe in such an enormous change in climate, and in the height of the land above the sea. Well—it is very astonishing, appalling—all but incredible, if we had not the facts to prove it. But of the facts there can be no doubt. There can be no doubt that the climate of this northern hemisphere has changed enormously more than once. There can be no doubt that the distribution of land and water, the shape and size of its continents and seas, have changed again and again. There can be no doubt that, for instance, long before the age of ice, the whole North of Europe was much warmer than it is now.
Take Greenland, for instance. Disco Island lies in Baffin’s Bay, off the west coast of Greenland, in latitude 70°, far within the Arctic circle. Now there certain strata of rock, older than the ice, have not been destroyed by the grinding of the ice-cap; and they are full of fossil plants. But of what kind of plants? Of the same families as now grow in the warmer parts of the United States. Even a tulip-tree has been found among them. Now how is this to be explained?
Either we must say that the climate of Greenland was then so much warmer than now, that it had summers probably as hot as those of New York; or we must say that these leaves and stems were floated thither from the United States. But if we say the latter, we must allow a change in the shape of the land which is enormous. For nothing now can float northward from the United States into Baffin’s Bay. The polar current sets out of Baffin’s Bay southward, bringing icebergs down, not leaves up, through Davis’s Straits. And in any case we must allow that the hills of Disco Island were then the bottom of a sea: or how would the leaves have been deposited in them at all?
So much for the change of climate and land which can be proved to have gone on in Greenland. It has become colder. Why should it not some day become warmer again?
Now for England. It can be proved, as far as common sense can prove anything, that England was, before the age of ice, much warmer than it is now, and grew gradually cooler and cooler, just as, while the age of ice was dying out, it grew warmer again.
Now what proof is there of that?
This. Underneath London—as, I dare say, many of you know—there lies four or five hundred feet of clay. But not ice-clay. Anything but that, as you will see. It belongs to a formation late (geologically speaking), but somewhat older than those Disco Island beds.
And what sort of fossils do we find in it?
In the first place, the shells, which are abundant, are tropical—Nautili, Cones, and such like. And more, fruits and seeds are found in it, especially at the Isle of Sheppey. And what are they? Fruits of Nipa palms, a form only found now at river-mouths in Eastern India and the Indian islands; Anona-seeds; gourd-seeds; Acacia fruits—all tropical again; and Proteaceous plants too—of an Australian type. Surely your common sense would hint to you, that this London clay must be mud laid down off the mouth of a tropical river. But your common sense would be all but certain of that, when you found, as you would find, the teeth and bones of crocodiles and turtles, who come to land, remember, to lay their eggs; the bones, too, of large mammals, allied to the tapir of India and South America, and the water-hog of the Cape. If all this does not mean that there was once a tropic climate and a tropic river running into some sea or other where London now stands, I must give up common sense and reason as deceitful and useless faculties; and believe nothing, not even the evidence of my own senses.
And now, have I, or have I not, fulfilled the promise which I made—rashly, I dare say some of you thought—in my first paper? Have I, or have I not, made you prove to yourself, by your own common sense, that the lowlands of Britain were underneath the sea in the days in which these pebbles and boulders were laid down over your plains? Nay, have we not proved more? Have we not found that that old sea was an icy sea? Have we not wandered on, step by step, into a whole true fairyland of wonders? to a time when all England, Scotland, and Ireland were as Greenland is now? when mud streams have rushed down from under glaciers on to a cold sea-bottom, when “ice, mast high, came floating by, as green as emerald?” when Snowdon was sunk for at least fourteen hundred feet of its height? when (as I could prove to you, had I time) the peaks of the highest Cumberland and Scotch mountains alone stood out, as islets in a frozen sea?
We want to get an answer to one strange question, and we have found a group of questions stranger still, and got them answered too. But so it is always in science. We know not what we shall discover. But this, at least, we know, that it will be far more wonderful than we had dreamed. The scientific explorer is always like Saul of old, who set out simply to find his father’s asses, and found them—and a kingdom besides.
I should have liked to have told you more about this bygone age of ice. I should have liked to say something to you on the curious question—which is still an open one—whether there were not two ages of ice; whether the climate here did not, after perhaps thousands of years of Arctic cold, soften somewhat for a while—a few thousand years, perhaps—and then harden again into a second age of ice, somewhat less severe, probably, than the first. I should have liked to have hinted at the probable causes of this change—indeed, of the age of ice altogether—whether it was caused by a change in the distribution of land and water, or by change in the height and size of these islands, which made them large enough, and high enough, to carry a sheet of eternal snow inland; or whether, finally, the age of ice was caused by an actual change in the position of the whole planet with regard to its orbit round the sun—shifting at once the poles and the tropics; a deep question that latter, on which astronomers, whose business it is, are still at work, and on which, ere young folk are old, they will have discovered, I expect, some startling facts. On that last question, I, being no astronomer, cannot speak. But I should have liked to have said somewhat on matters on which I have knowledge enough, at least, to teach you how much there is to be learnt. I should have liked to tell the student of sea-animals—how the ice-age helps to explain, and is again explained by, the remarkable discoveries which Dr. Carpenter and Mr. Wyville Thompson have just made, in the deep-sea dredgings in the North Atlantic. I should have liked to tell the botanist somewhat of the pro-glacial flora—the plants which lived here before the ice, and lasted, some of them at least, through all those ages of fearful cold, and linger still on the summits of Snowdon, and the highest peaks of Cumberland and Scotland. I should have liked to have told the lovers of zoology about the animals which lived before the ice—of the mammoth, or woolly elephant; the woolly rhinoceros, the cave lion and bear, the reindeer, the musk oxen, the lemmings and the marmots which inhabited Britain till the ice drove them out southward, even into the South of France; and how as the ice retreated, and the climate became tolerable once more, some of them—the mammoth and rhinoceros, the bison, the lion, and many another mighty beast reoccupied our lowlands, at a time when the hippopotamus, at least in summer, ranged freely from Africa and Spain across what was then dry land between France and England, and fed by the side of animals which have long since retreated to Norway and to Canada. I should have liked to tell the archæologist of the human beings—probably from their weapons and their habits—of the same race as the present Laplanders, who passed northward as the ice went back, following the wild reindeer herds from the South of France into our islands, which were no islands then, to be in their turn driven northward by stronger races from the east and south. But space presses, and I fear that I have written too much already.
At least, I have turned over for you a few grand and strange pages in the book of nature, and taught you, I hope, a key by which to decipher their hieroglyphics. At least, I have, I trust, taught you to look, as I do, with something of interest, even of awe, upon the pebbles in the street.
III. THE STONES IN THE WALL
This is a large subject. For in the different towns of these islands, the walls are built of stones of almost every age, from the earliest to the latest; and the town-geologist may find a quite different problem to solve in the nearest wall, on moving from one town to another twenty miles off. All I can do, therefore, is to take one set of towns, in the walls of which one sort of stones is commonly found, and talk of them; taking care, of course, to choose a stone which is widely distributed. And such, I think, we can find in the so-called New Red sandstone, which, with its attendant marls, covers a vast tract—and that a rich and busy one—of England. From Hartlepool and the mouth of the Tees, down through Yorkshire and Nottinghamshire; over the manufacturing districts of central England; down the valley of the Severn; past Bristol and the Somersetshire flats to Torquay in South Devon; up north-westward through Shropshire and Cheshire; past Liverpool and northward through Lancashire; reappearing again, north of the Lake mountains, about Carlisle and the Scotch side of the Solway Frith, stretches the New Red sandstone plain, from under which everywhere the coal-bearing rocks rise as from a sea. It contains, in many places, excellent quarries of building-stone; the most famous of which, perhaps, are the well-known Runcorn quarries, near Liverpool, from which the old Romans brought the material for the walls and temples of ancient Chester, and from which the stone for the restoration of Chester Cathedral is being taken at this day. In some quarters, especially in the north-west of England, its soil is poor, because it is masked by that very boulder-clay of which I spoke in my last paper. But its rich red marls, wherever they come to the surface, are one of God’s most precious gifts to this favoured land. On them, one finds oneself at once in a garden; amid the noblest of timber, wheat, roots, grass which is green through the driest summers, and, in the western counties, cider-orchards laden with red and golden fruit. I know, throughout northern Europe, no such charming scenery, for quiet beauty and solid wealth, as that of the New Red marls; and if I wished to show a foreigner what England was, I should take him along them, from Yorkshire to South Devon, and say—There. Is not that a country worth living for,—and worth dying for if need be?
Another reason which I have for dealing with the New Red sandstone is this—that (as I said just now) over great tracts of England, especially about the manufacturing districts, the town-geologist will find it covered immediately by the boulder clay.
The townsman, finding this, would have a fair right to suppose that the clay was laid down immediately, or at least soon after, the sandstones or marls on which it lies; that as soon as the one had settled at the bottom of some old sea, the other settled on the top of it, in the same sea.
A fair and reasonable guess, which would in many cases, indeed in most, be quite true. But in this case it would be a mistake. The sandstone and marls are immensely older than the boulder-clay. They are, humanly speaking, some four or five worlds older.
What do I mean? This—that between the time when the one, and the time when the other, was made, the British Islands, and probably the whole continent of Europe, have changed four or five times; in shape; in height above the sea, or depth below it; in climate; in the kinds of plants and animals which have dwelt on them, or on their sea-bottoms. And surely it is not too strong a metaphor, to call such changes a change from an old world to a new one.
Mind. I do not say that these changes were sudden or violent. It is far more probable that they are only part and parcel of that vast but slow change which is going on everywhere over our whole globe. I think that will appear probable in the course of this paper. But that these changes have taken place, is my main thesis. The fact I assert; and I am bound to try and prove it. And in trying to do so, I shall no longer treat my readers, as I did in the first two papers, like children. I shall take for granted that they now understand something of the method by which geological problems are worked out; and can trust it, and me; and shall state boldly the conclusions of geologists, only giving proof where proof is specially needed.
Now you must understand that in England there are two great divisions of these New Red sandstones, “Trias,” as geologists call them. An upper, called in Germany Keuper, which consists, atop, of the rich red marl, below them, of sandstones, and of those vast deposits of rock-salt, which have been long worked, and worked to such good purpose, that a vast subsidence of land has just taken place near Nantwich in Cheshire; and serious fears are entertained lest the town itself may subside, to fill up the caverns below, from whence the salt has been quarried. Underneath these beds again are those which carry the building-stone of Runcorn. Now these beds altogether, in Cheshire, at least, are about 3,400 feet thick; and were not laid down in a year, or in a century either.
Below them lies a thousand feet of sandstones, known in Germany by the name of “Bunter,” from its mottled and spotted appearance. What lies under them again, does not concern us just now.
I said that the geologists called these beds the Trias; that is, the triple group. But as yet we have heard of only two parts of it. Where is the third?
Not here, but in Germany. There, between the Keuper above and the Bunter below, lies a great series of limestone beds, which, from the abundance of fossils which they contain, go by the name of Muschelkalk. A long epoch must therefore have intervened between the laying down of the Bunter and of the Keuper. And we have a trace of that long epoch, even in England. The Keuper lies, certainly, immediately on the Bunter; but not always “conformably” on it. That is, the beds are not exactly parallel. The Bunter had been slightly tilted, and slightly waterworn, before the Keuper was laid on it.
It is reasonable, therefore, to suppose, that the Bunter in England was dry land, and therefore safe from fresh deposit, through ages during which it was deep enough beneath the sea in Germany, to have the Muschelkalk laid down on it. Here again, then, as everywhere, we have evidence of time—time, not only beyond all counting, but beyond all imagining.
And now, perhaps, the reader will ask—If I am to believe that all new land is made out of old land, and that all rocks and soils are derived from the wear and tear of still older rocks, off what land came this enormous heap of sands more than 5,000 feet thick in places, stretching across England and into Germany?
It is difficult to answer. The shape and distribution of land in those days were so different from what they are now, that the rocks which furnished a great deal of our sandstone may be now, for aught I know, a mile beneath the sea.
But over the land which still stands out of the sea near us there has been wear and tear enough to account for any quantity of sand deposit. As a single instance—It is a provable and proven fact—as you may see from Mr. Ramsay’s survey of North Wales—that over a large tract to the south of Snowdon, between Port Madoc and Barmouth, there has been ground off and carried away a mass of solid rock 20,000 feet thick; thick enough, in fact, if it were there still, to make a range of mountains as high as the Andes. It is a provable and proven fact that vast tracts of the centre of poor old Ireland were once covered with coal-measures, which have been scraped off in likewise, deprived of inestimable mineral wealth. The destruction of rocks—“denudation” as it is called—in the district round Malvern, is, I am told, provably enormous. Indeed, it is so over all Wales, North England, and West and North Scotland. So there is enough of rubbish to be accounted for to make our New Red sands. The round pebbles in it being, I believe, pieces of Old Red sandstone, may have come from the great Old Red sandstone region of South East Wales and Herefordshire. Some of the rubbish, too, may have come from what is now the Isle of Anglesey.
For you find in the beds, from the top to the bottom (at least in Cheshire), particles of mica. Now this mica could not have been formed in the sand. It is a definite crystalline mineral, whose composition is well known. It is only found in rocks which have been subjected to immense pressure, and probably to heat. The granites and mica-slates of Anglesey are full of it; and from Anglesey—as likely as from anywhere else—these thin scales of mica came. And that is about all that I can say on the matter. But it is certain that most of these sands were deposited in a very shallow water, and very near to land. Sand and pebbles, as I said in my first paper, could not be carried far out to sea; and some of the beds of the Bunter are full of rounded pebbles. Nay, it is certain that their surface was often out of water. Of that you may see very pretty proofs. You find these sands ripple-marked, as you do shore-sands now. You find cracks where the marl mud has dried in the sun: and, more, you find the little pits made by rain. Of that I have no doubt. I have seen specimens, in which you could not only see at a glance that the marks had been made by the large drops of a shower, but see also from what direction the shower had come. These delicate markings must have been covered up immediately with a fresh layer of mud or sand. How long since? How long since that flag had seen the light of the sun, when it saw it once again, restored to the upper air by the pick of the quarryman? Who can answer that? Not I.
Fossils are very rare in these sands; it is not easy to say why. It may be that the red oxide of iron in them has destroyed them. Few or none are ever found in beds in which it abounds. It is curious, too, that the Keuper, which is all but barren of fossils in England, is full of them in Würtemberg, reptiles, fish, and remains of plants being common. But what will interest the reader are the footprints of a strange beast, found alike in England and in Germany—the Cheirotherium, as it was first named, from its hand-like feet; the Labyrinthodon, as it is now named, from the extraordinary structure of its teeth. There is little doubt now, among anatomists, that the bones and teeth of the so-called Labyrinthodon belong to the animal which made the footprints. If so, the creature must have been a right loathly monster. Some think him to have been akin to lizards; but the usual opinion is that he was a cousin of frogs and toads. Looking at his hands and other remains, one pictures him to oneself as a short, squat brute, as big as a fat hog, with a head very much the shape of a baboon, very large hands behind and small ones in front, waddling about on the tide flats of a sandy sea, and dragging after him, seemingly, a short tail, which has left its mark on the sand. What his odour was, whether he was smooth or warty, what he ate, and in general how he got his living, we know not. But there must have been something there for him to eat; and I dare say that he was about as happy and about as intellectual as the toad is now. Remember always that there is nothing alive now exactly like him, or, indeed, like any animal found in these sandstones. The whole animal world of this planet has changed entirely more than once since the Labyrinthodon waddled over the Cheshire flats. A lizard, for instance, which has been found in the Keuper, had a skull like a bird’s, and no teeth—a type which is now quite extinct. But there is a more remarkable animal of which I must say a few words, and one which to scientific men is most interesting and significant.
Both near Warwick, and near Elgin in Scotland, in Central India, and in South Africa, fossil remains are found of a family of lizards utterly unlike anything now living save one, and that one is crawling about, plentifully I believe—of all places in the world—in New Zealand. How it got there; how so strange a type of creature should have died out over the rest of the world, and yet have lasted on in that remote island for long ages, ever since the days of the New Red sandstone, is one of those questions—quite awful questions I consider them—with which I will not puzzle my readers. I only mention it to show them what serious questions the scientific man has to face, and to answer, if he can. Only the next time they go to the Zoological Gardens in London, let them go to the reptile-house, and ask the very clever and courteous attendant to show them the Sphenodons, or Hatterias, as he will probably call them—and then look, I hope with kindly interest, at the oldest Conservatives they ever saw, or are like to see; gentlemen of most ancient pedigree, who have remained all but unchanged, while the whole surface of the globe has changed around them more than once or twice.
And now, of course, my readers will expect to hear something of the deposits of rock-salt, for which Cheshire and its red rocks are famous. I have never seen them, and can only say that the salt does not, it is said by geologists, lie in the sandstone, but at the bottom of the red marl which caps the sandstone. It was formed most probably by the gradual drying up of lagoons, such as are depositing salt, it is said now, both in the Gulf of Tadjara, on the Abyssinian frontier opposite Aden, and in the Runn of Cutch, near the Delta of the Indus. If this be so, then these New Red sandstones may be the remains of a whole Sahara—a sheet of sandy and all but lifeless deserts, reaching from the west of England into Germany, and rising slowly out of the sea; to sink, as we shall find, beneath the sea again.