Sadece LitRes`te okuyun

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «Bir nefeste evren», sayfa 2

Yazı tipi:

Kesin olarak bildiğimiz şey, Brahe’nin astronomiye olan tutkusu ve bu işte ne kadar iyi olduğu. Gökyüzüyle ilgili ölçümleri, kendisinden önceki astronomlara kıyasla çok daha doğruydu. Danimarka Kralı, Brahe’ye şu an İsveç sınırları içerisinde bulunan küçük Ven adasını hediye etti ve devasa bir gözlemevi inşa etmesi için mali yardımda bulundu. Brahe, buraya Zeus’un kızı ve astronominin ilham perisi Urania’dan gelen Uraniborg adını verdi.

Uraniborg’daki sosyal ortam da orada yapılan astronomik gözlemler kadar ilgi çekiciydi. Brahe, Jepp adında cüce bir soytarıyı işe almıştı. Jepp gelen konukları korkutmak için masa altlarına saklanır ve birden önlerine zıplardı. Ayrıca yine orada, evcilleştirilmiş bir alageyiği de vardı; ancak bir gün kapağı açık kalmış bir fıçıdan bira içen alageyik, sarhoş oldu ve merdivenlerden düştü. Brahe’nin ölümü de benzer bir sebeple gerçekleşecekti. 1601 yılında Prag’da savurganlık yaptığı bir ziyafette, tükettiği yüksek alkol miktarına rağmen masayı terk edip tuvalete gitmeyi reddetti. 11 gün sonra, kana çok fazla üre karışması sonucunda ortaya çıkan üremi sebebiyle öldü. Tuvalete gitmediği için mesanesi patlamıştı.

44 yaşındaki zamansız ölümünden önce Brahe, Uraniborg’daki gözlemevinde yıldızların ve gezegenlerin hareketlerini özenle kaydetti; bunu yaparken gökyüzündeki cisimlerin aralarındaki açıyı ölçmek için kullanılan sekstant ve kuadrant isimli mekanik aletlerden yararlandı. Gözlemlerinin neredeyse büyük bir bölümü, yalnızca 1 derece kadar şaşmıştı. Bu, ona Dünya merkezli ve Güneş merkezli modelleri birleştirme olanağını sundu. Dünya kadar büyük bir cismin hareket edebileceğine kendini inandıramamıştı, bu yüzden kendi evren modelinde (Tychonic model) Güneş’i ve Ay’ı Dünya’nın yörüngesinde, diğer gezegenleri ise Güneş’in yörüngesinde tasvir etmiştir. Tıpkı Batlamyus’un dış çemberler modeli gibi bu model de gezegenlerin geri hareketini açıklıyordu.

En azından kâğıt üstünde açıklıyordu demeliyiz. Ancak bu üç modelden (Batlamyus’un, Kopernik’in ve Tycho’nun modelleri) hangisinin yaşadığımız evreni tamamen doğru tasvir ettiği hakkında yeterli kanıt hâlâ yoktu. Sonra Danimarkalı bir mercek ustasının yanlışlıkla yaptığı bir keşif, astronomiyi sonsuza dek değiştirdi.

Brahe, Dünya’nın merkezde olduğu ancak bazı gezegenlerin Güneş’in yörüngesinde döndüğü melez bir model tasarladı.


Teleskopun icadı

Bu noktaya kadar bahsettiğimiz tüm astronomik gözlemler çıplak gözle, sekstant ve kuadrant adı verilen araçlar kullanılarak yapılmıştı. Sonra Danimarkalı Hans Lippershey, 1608 yılında teleskopu keşfetti. Patent başvurusunda “uzaktaki nesneleri çok yakınmış gibi görebilmek için bir alet” demişti. Bu aleti ilk keşfedenin gerçekten o olup olmadığı çok kesin değil; ancak tarih, bu buluş için itibarı genelde ona atfediyor. Bilim alanında yapılan birçok devrim, muhtemelen uydurulmuş “kavrama anları” ile birlikte anılır; Arşimet’in “Eureka” diye bağırması ya da Isaac Newton’ın yere düşen elmadan yola çıkması gibi. Teleskopun icadı da farklı değil.

Lippershey’in aydınlanma ânının, atölyesindeki eski merceklerle oynayan iki çocuğu gördüğünde gerçekleştiği söylenir. İki merceği üst üste koyup uzaktaki bir rüzgârgülüne baktığında, rüzgârgülünün normalden çok büyük göründüğünü fark etti. Lippershey bu etkiyi kullanarak nesneleri üç kata kadar yakınlaştıran bir alet tasarladı. Birkaç yıl sonra Yunan bilim insanı Giovanni Demisiani bu alete bir isim vermek için antik Yunancada uzak anlamına gelen tele ve bakmak anlamına gelen skopein kelimelerini birleştirerek “teleskopos” kelimesini buldu.

Ancak bu yeni icadı gerçekten etkili bir şekilde kullanacak esas kişi İtalyan bir matematikçiydi, bunu yaparak nihayet çok ama çok eski bir düşünceyi yerle bir etti.

Galileo ve teleskopik gözlemleri

1608 yılında İtalyan bilim insanı Galileo Galilei, Padua’daki yerel bir üniversitede matematik öğretiyordu. Venedik şehrini ziyaret ettiği sırada, Avrupa’yı âdeta kasıp kavuran Hollanda yapımı yeni aletin bir kopyasıyla karşılaştı. Tasarımı geliştirmek için çabaladı ve çok geçmeden görüntüyü sekiz kat büyüten bir teleskop elde etti (Lippershey’in tasarımı üç kat büyütüyordu). Daha sonra bu tasarımı iyice geliştirerek görüntüyü otuz kattan fazla yaklaştıran bir alet yaptı.

Galileo kısa sürede tamamen Dünya merkezli bir evrende yaşamadığımızı fark etti. Batlamyus yanılmıştı. 7 Haziran 1609’da teleskopunu Jüpiter’e doğru çevirdi ve gezegenin etrafında dönen üç küçük cisim fark etti. Bir hafta içinde dördüncü bir cisim daha olduğunu gördü. Jüpiter’in dört büyük uydusu artık Galileo’nun onuruna, Galileo uyduları olarak adlandırılıyor (bkz. 107. sayfa). Dünya’nın ya da Güneş’in etrafında dönmeyen dört cismin varlığı apaçık görülüyordu.

1610 yılında Galileo, Venüs’ün de tıpkı Ay gibi farklı evreleri olduğunu fark ettiğinde, sorunu kökünden çözen keşif gerçekleşti. Venüs, bazen “tam” bazen de hilal şeklinde görünüyordu. Şekli de değişiyordu, sanki bize bir yaklaşıp bir uzaklaşıyor gibiydi. Batlamyus’un düşündüğü gibi hem Venüs hem de Güneş, Dünya’nın etrafında dönüyor olsaydı Venüs’ün evrelerini gözlemleyemezdik. Batlamyus’un sistemine göre Venüs, Dünya ile Güneş’in arasına hiç girmiyordu; evreleri görebilmemiz için ise bir hizalanma gerekiyordu. Brahe ve Kopernik’in modellerinde ise Venüs’ün ışığını, Dünya ile Güneş arasında olduğu sırada çok az görebiliyorduk, çünkü Güneş ışınlarının birçoğu gezegenin bize dönük olmayan yüzüne vuruyordu. Bize dönük olan tarafı ise bizden en uzakta olduğu sırada aydınlıktı.

Nihayet Batlamyus’un eski Dünya merkezli modelini hükümsüz kılacak kanıt bulunmuştu. Ancak Güneş merkezli evren modeline destek vermek hâlâ tehlikeliydi. Galileo, Kopernik’in haklı olduğunu savunduğunda ruhban sınıfının öfkesiyle karşılaştı. Ruhban sınıfı, Brahe’nin modelini destekledi; çünkü hem Dünya’nın merkez olduğunu öne süren dini görüşlere uyuyor hem de Venüs’ün evrelerini açıklayabiliyordu. 1616 yılında Engizisyon, Güneş merkezli evren fikrini savunmanın, kutsal kitabı yalanlamak olduğunu bildirdi. 1633 yılında Galileo mahkemeye çıkarıldı ve sapkınlıktan suçlu bulundu. Cezası ömür boyu ev hapsiydi. 77 yaşındayken öldüğü 1642 yılına kadar günlerini, bilimin daha tartışmasız alanları üzerine önemli kitaplar yazarak geçirdi. Kilise ise nihayetinde Galileo’yu affetti, ancak tam 1992 yılında!

Galileo ayrıca Ay üzerindeki dağların resimlerini çizdi ve bu dağların gölge boylarını kullanarak yüksekliklerini hesaplamaya çalıştı. Bulduğu sonuçlar, Ay yüzeyinde kimsenin beklemeyeceği kadar yüksek tepeler olduğunu ortaya çıkardı. Satürn’ün halkalarını ilk gören kişi olarak bu halkaları, gezegenin iki yanına yapışan “kulaklar” olarak betimledi. Hatta Güneş’in yüzeyindeki lekeleri bile inceleyip Samanyolu’nun yalnızca bir gaz bulutu olmadığını ve yıldızlarla dolu olduğunu açığa çıkardı.

Johannes Kepler ve gezegen yasaları

Alman matematikçi Johannes Kepler, Kopernik modelinin en eski ve en yüksek sesli savunucularından biriydi, hem de bunu Galileo’nun gözlemlerinden önce yapıyordu. 1600 yılında Tycho Brahe’nin yardımcısı olan Kepler, Güneş’in etrafında dönen gezegenlerin matematiksel kurallarını öğrenmek için yanıp tutuşuyordu. Brahe’nin bazı gözlemlerini kullanmaya izni vardı, ancak Brahe diğer bilgilerini dikkatle koruyordu. Brahe’nin bir yıl sonra ölmesinden sonra tüm çalışmaları Kepler’e kaldı; bu olay, bazı tarihçiler tarafından bir cinayet olarak görülüyor. Brahe’nin cesedi 1901 yılında incelendiğinde vücudunda civa izlerine rastlandı. Acaba gerçekten mesane problemleri yüzünden mi ölmüştü? Yoksa Kepler, Brahe’nin rakipsiz astronomik kataloğuna ulaşmak için onu zehirlemiş miydi? Ne de olsa Brahe’nin nasıl öldüğünü yalnızca Kepler’in günlükleri sayesinde biliyoruz. Gelgelelim Brahe 2010 yılında mezardan tekrar çıkarıldığında yapılan testler gösterdi ki vücudunda bulunan civa miktarı ölümüne neden olamayacak kadar azdı.

Brahe’nin ölümünden sonra Kepler, gözlemlerini kullanarak gezegen hareketlerini açıklayan üç ünlü yasayı oluşturdu:

Birinci Yasa: Gezegenler, odak noktalarının birinin Güneş olduğu, elips bir yörünge üzerinde hareket ederler.

Kepler, gezegenlerin Güneş etrafında, antik medeniyetlerin ve hatta Kopernik’in sandığı gibi kusursuz çemberler üzerinde hareket etmediğini görebiliyordu. Bunun yerine elips adı verilen oval bir şekil çiziyorlardı. Bir elipsin iki odak noktası bulunur (odak noktaları eğrinin içindeki önemli matematiksel noktalara verilen isimdir). Güneş de bu odak noktalarının birinde bulunur.

İkinci Yasa: Güneş ve bir gezegen arasındaki çizgi, eşit zamanda eşit alanları tarar.

Gezegenlerin elips yörüngelerinin olmasının bir sonucu olarak bazı gezegenler, Güneş’e diğerlerinden daha yakındır. Ancak Kepler fark etti ki Güneş ve bir gezegen arasındaki çizgi, aynı toplam alanı, aynı sürede tarıyor (aşağıya bakınız). Basitleştirmek gerekirse aynı gezegen, Güneş’e yakın olduğunda hızlanıyor, uzak olduğunda ise yavaşlıyor.


Kepler’e göre gezegenler, Güneş etrafında elips çizerek dönerler ve Güneş’e yakın olduklarında hızlanırlar.


Üçüncü Yasa: Bir gezegenin yörüngesel devrinin karesi, gezegenin Güneş’e olan uzaklığının küpü ile doğru orantılıdır.

Özü itibarıyla, bir gezegen Güneş’ten ne kadar uzaksa Güneş etrafındaki dönüşünü tamamlaması o kadar uzun sürer. Bu çok mantıklı, Güneş etrafındaki turunu en hızlı tamamlayan gezegen Merkür, çünkü izlediği yörünge diğerlerine kıyasla en küçüğü. Satürn’ün bu turu tamamlaması çok daha uzun sürüyor çünkü tamamlaması gereken yolculuk çok daha uzun. Kepler’in aydınlanışı, bu iki şey arasındaki kesin matematiksel ilişkiyi açıklamasıyla gerçekleşti. Brahe’nin doğru gözlemlerini kullanarak bir gezegenin yörüngesini tamamladığı sürenin karesi (süre x 2), gezegenin Güneş’e olan uzaklığının küpü (kendi uzaklığı x 3) ile doğru orantılıydı.

Bu yasalar, doğrudan gözlemlere dayalı deneysel yasalardı; gezegenlerin neden Güneş’in etrafında döndüğüne dair teorik açıklamalar değildi. O ileri seviye anlayış, 1666 yılında bir salgın yüzünden Cambridge’i terketmek zorunda kalan ve annesinin bahçesinde otururken kafasına elma düşen bir İngiliz matematikçi ile gelecekti.

Isaac Newton ve yerçekimi

Newton ve elma hikâyesinin içinde ufak bir gerçeklik payı var, ancak elma kafasına düşmedi. En azından güvenilen biyografi Memoirs of Sir Isaac Newton’s Life (1752) isimli kitaba göre böyle. Newton, kitabın yazarı William Stukeley’ye, yerçekimi teorisini, akşam yemeğinden sonra bahçede çay içtikleri sırada, bir elmanın yere düştüğünü gördükten sonra keşfettiğini söylemiş.

Newton’ın temel kavrayışı, evrendeki her cismin bir diğerine karşı çekim kuvveti uygulamasıyla alakalıydı. Elma yeryüzüne doğru çekiliyordu, bu yüzden düştü. Düşmesi devam etmemişti, çünkü yere çarpmıştı. Newton fark etti ki eğer elmayı yeterli bir yüksekliğe ve hıza çıkarabilirsek yeryüzü araya girmeyeceği için Dünya’nın etrafında dolanarak düşmeye devam ederdi. Dünya’nın yörüngesinde dönerdi. Akıl yürütmedeki bu devrimsel sıçramayı Ay’ı düşünerek yaptı. Ay, Dünya’nın yörüngesinde elmanın düşme sebebiyle aynı sebepten dönüyordu, çünkü onun yolunu kesen hiçbir şey yoktu. Bunların hepsi iki cisim arasındaki çekim kuvvetinden kaynaklanıyordu.

Yerçekimi hakkındaki düşüncelerini, 1687 yılında Doğa Felsefesinin Matematiksel İlkeleri (Philosophiæ Naturalis Principia Mathematica) adlı kitabında yayımladı. Bu kitap, hareketin yasaları da dahil olmak üzere, muazzam önemdeki diğer düşüncelerini de içeriyordu. Newton kitapta, iki cisim arasındaki çekim kuvvetinin, cisimlerin arasındaki mesafenin karesiyle ters oran-tılı olduğunu belirtti. Yani eğer iki cisim arasındaki mesafeyi iki katına çıkarırsanız çekim kuvveti çeyrek orana düşer. Mesafeyi üç katına çıkardığınızda bu kuvvet, dokuzda bire düşer. Düşüncelerini bu kadar güçlü yapan şey ise Kepler’in gezegen hareketleri yasasını açıklamak için, hem evrensel çekim kanununu hem de hareket yasalarını kullanmasıydı (bkz. 34. sayfa). Etkili bir şekilde “Gezegenlerin neden Güneş’in etrafında döndüğünü biliyorum ve bunu kanıtlayabilirim, çünkü fikirlerim Kepler’in buldukları ile aynı sonuçları verdi,” diyordu.

Kepler’in ikinci yasasına bir bakalım. Bu yasa, bizlere Güneş ve bir gezegen arasındaki çizginin aynı sürede eşit alanları taradığını söylüyordu. Bir başka deyişle gezegenler Güneş’e yakınken hızlanıyor, uzaklaştığında ise yavaşlıyordu. İşte Newton, gezegenlerin bu davranışına bir açıklama getirdi. İki cisim arasındaki çekim, birbirlerine yaklaştıkça artıyor, uzaklaştıkça zayıflıyordu. Bir gezegen, Güneş’e yakın olduğunda daha kuvvetli bir çekim alanına giriyor ve gezegenin hızı artıyor; Güneş’ten uzaklaşırken ise bu çekimin gücü düşüyor ve dolayısıyla gezegen yavaşlamaya başlıyor.

Bu arada Newton’ın başyapıtı neredeyse basılmayacaktı. The Royal Society2 tüm bütçesini Balıkların Tarihi adlı başarısız bir kitap için kullanmıştı. Daha sonra astronom Edmund Halley olaya dahil oldu ve baskı masraflarının hepsini karşıladı. Bunu yaparak tüm zamanların en önemli kitaplarından birinin (bilimsel olsun veya olmasın) günümüze ulaşmasını sağladı.

Isaac Newton ve ışık

Düşen elmanın hayal gücünü canlandırdığı sıralarda Newton ayrıca, prizmalarla ve ışıkla ilgileniyordu. Bu cam bloklarla deney yapmak yeni bir şey değildi ve prizmaya giren beyaz ışığın birçok farklı renkte çıktığı da uzun süredir biliniyordu. Ancak geçerli görüş, ışığı renklendiren şeyin prizmaların ta kendisi olduğuydu. Işığın kendisi saf beyazdı.

Newton, bu görüşün yanlışlığını basit ama zekice bir deneyle kanıtladı. 1666 yılında güneşli bir günde penceresinin tamamını, içeriye ışık giremeyecek şekilde kapladı ve kaplamaya yalnızca çok az güneş ışınının girebileceği küçücük bir delik açtı. Işığın geçtiği yola bir prizma koydu ve beklendiği gibi gökkuşağının renkleri ortaya çıktı. Deneyin zekice olan kısmına gelirsek: Bu renklerin yoluna ters çevrilmiş ikinci bir prizma yerleştirdi.

Gerçekten de ikinci prizma, ayrı renklerin hepsini birleştirerek bunları tekrar beyaz bir ışığa çevirdi. Demek ki prizmalar beyaz ışığa renk falan eklemiyordu. Beyaz ışık, prizmaların ayırabildiği (veya birleştirebildiği) farklı renklerin karışımından oluşmalıydı. Newton, bulduğu sonuçları 1672’de yayımladı.

Işığın özellikleri ile alakalı bu temel anlayış, modern astronominin birçok alanının bel kemiğini oluşturdu. İlerleyen bölümlerde göreceğimiz gibi, astronomlar bu bilgilere defalarca başvurdu.

AYNALI TELESKOP

Newton 1668 yılında yeni bir teleskop türü tasarladı. Önceki teleskoplar mercekli (refraktör) teleskoplardı, bu teleskoplar ışığı mercekler aracılığıyla kırıyor veya büküyordu. Newton’ın aynalı (yansıtıcı) teleskopu, refraktör teleskoplarla ilgili en büyük sorunu çözüyordu: Renk sapması. Çünkü mercekler, ışığın her bir rengini tıpkı prizmaların yaptığı gibi biraz farklı bir şekilde büküyordu, yani hepsinin odak noktası farklıydı.

Newton teleskopunda ise ışık tepeden giriyor ve dipteki içbükey aynaya vuruyor. Bu ışık boruya yansıtılıyor, düz olan ikinci bir aynaya çarpıyor ve odaklanılan görüntüyü yandaki göz merceğine yansıtıyor.

Günümüzde devasa teleskopların hepsi aynalı, çünkü mercekli teleskopların büyüklüğünün bir sınırı var. Bu teleskoplarda ışık, merceğin içinden geçmek zorunda, yani merceği yanlardan sabitlemelisiniz. Çok büyük bir mercek kullanırsanız kendi ağırlığı yüzünden eğilir ve artık ışığı düzgünce odaklayamaz. Ancak bir ayna, arkadan da desteklenebilir. Dünya’nın en büyük mercekli teleskopu bir metrelik merceğe sahipken, en büyük yansıtıcı teleskopun on metreyi aşan bir çapı var.

Römer ve ışığın hızı

17. yüzyılın sonları, ışığın doğasına dair fikirlerimiz için devrimsel bir zamandı. Isaac Newton renklerin kökeniyle ilgili değerli keşifler yaparken Danimarkalı astronom Ole Römer de ışığın ne kadar hızlı hareket ettiği konusunda çalışmalar yapıyordu.

1670’li yıllarda Paris Kraliyet Gözlemevi’nin astronomları, Jüpiter’in dört Galileo uydusunun ölçümlerini yapmak için Tycho Brahe’nin Ven adasındaki Uraniborg Gözlemevi’ne gittiler. Amaçları, gezegen tarafından tutulmaya girdiklerinde görüşten ne zaman kaybolduklarını not etmekti. Römer ise Fransız astronom Jean Picard’ın yerel asistanıydı ve Uraniborg’daki işleri biter bitmez Römer’e, Paris’te bir iş teklifi sunuldu.

Uyduların gözlemlenmesi kafa karıştırıcı bir bilmeceyi ortaya çıkardı: Newton’ın çekim kuvvetine göre yapılan hesaplamalara rağmen, tutulmalar bazen erken bazen de geç gerçekleşiyordu. 1676 yılına gelindiğinde Römer, gözlemevinin yöneticisi Giovanni Cassini’nin çalışmalarına dayanarak açıklamayı keşfetmişti. İleri sürdükleri şey, ışığın uzayda seyahatinin belli bir zaman aldığıydı. Önceden ise ışık hızının sonsuz olduğu, yani A noktasından B noktasına aniden gittiği düşünülüyordu. Gelgelelim Jüpiter ve Dünya yakınken tutulmaların erken, Jüpiter ve Dünya birbirinden uzakken de tutulmaların gecikmeli gerçekleştiği görülüyordu. Bunun üzerine Römer, Dünya ve Güneş arasındaki mesafeyi aşması için, ışığın on bir dakikaya ihtiyacı olduğunu hesaplamıştı. Bu hız, saniyede 220.000.000 (220 milyon) metreye denk geliyordu.

Günümüzde ışık hızının saniyede 299.792.458 (299 küsur milyon) metre olduğunu biliyoruz, yani Römer ve Cassini aslında çok da alakasız bir sonuç bulmamışlardı. Ancak asıl önemli olan şey buldukları sonuç değil, ışık hızının limitli olduğunu kesin şekilde kanıtlamalarıydı; ışık bir yerden bir yere giderken belli bir zamana ihtiyaç duyuyordu. Günlük yaşamımızda bunu fark etmiyoruz, çünkü ışık çok hızlı. Yalnızca “astronomik” mesafeler bunu fark edilebilir kılıyor. Bu fikre daha birçok kez geri döneceğiz.

Kozmik mesafeler hakkında konuşurken iyi bilinen bir yol da ışık yıllarından bahsetmektir. Bir ışık yılı, ışığın bir yılda katettiği mesafeye denir. Işık, saniyede 299.792.458 metre yol katederek bir yılda 9,46 trilyon kilometre yol alır. Dünya’ya en yakın yıldız, aşağı yukarı 40 trilyon kilometre, yani 4,2 ışık yılı uzaklıktadır. Daha yakın cisimler için ışık saatlerini, ışık dakikalarını hatta ışık saniyelerini bile kullanabilirsiniz. Örneğin Plüton, Dünya’dan 5,3 ışık saati uzaklıktadır. Güneş, 8,3 ışık dakikası uzaklıkta; Ay ise yalnızca 1,3 ışık saniyesi uzağımızdadır.

Halley ve kuyrukluyıldızı

1670’li yıllarda hem Fransız hem de İngiliz kralları, kraliyet gözlemevleri kurdular; amaçları ise yıldızları kullanarak denizdeki keşifleri hızlandırmaktı. İngiltere’de, Greenwich’teki Kraliyet Gözlemevi’nin yöneticisi Kraliyet Astronomu olarak isimlendirilmişti. Bu unvanı ilk alan bilim insanı John Flamsteed 1719 yılında öldüğünde, unvanı yardımcısı Edmund Halley devraldı. Edmund Halley, Newton’ın başyapıtı Principia için de parasal yardımda bulunmuş birisiydi (bkz. 37. sayfa).

Halley’nin Principia’nın basımı için para ödeme sebeplerinden biri de Newton’ın çalışmasının gücünü görmüş olmasıydı. 1684 yılında, kitabın basımından 3 yıl önce Halley, Newton’ı ziyaret etti. Bu ziyaret sırasında iki bilim insanı, çekim kuvveti-nin Güneş’in etrafında yuvarlanan buzlu moloz yığınlarına, yani kuyrukluyıldızlara olan etkisini tartıştılar (o sıralarda bu durum herkesçe bilinmiyordu). 1680 yılında, Kirch adı verilen gözalıcı bir kuyrukluyıldız gökyüzünde parıldadı. Newton, bu kuyrukluyıldızın da Kepler Yasaları’na uyduğunu göstermek için, Flamsteed’in gözlemlerini kullandı. Yörüngesi elips şeklindeydi ve Güneş’e yaklaştıkça hızlandı, yani tıpkı gezegenler gibi bu kuyrukluyıldız da Güneş’in çekim kuvvetinden etkilenmişti.

1705 yılına gelindiğinde Halley, Newton’ın çalışmalarına dayanarak kendi kuyrukluyıldız kitabını yazdı ve kitaba Synopsis of the Astronomy of Comets (Kuyrukluyıldızların Astronomisine Bir Bakış) adını verdi. Artık kuyrukluyıldızların Güneş’in yörüngesinde döndüğünü bildiğinden 1531, 1607 ve 1682 yıllarında görünen üç kuyrukluyıldızın aslında, ardışık yörüngelerde Dünya’nın yakınında seyahat eden aynı kuyrukluyıldız olduğunu ileri sürdü. Hatta bu kuyrukluyıldızın 1758 yılında yine görüneceğini söyledi. Halley 1742 yılında yaşamını yitirdi, bu yüzden kuyrukluyıldızın tam söylediği yılda geri döndüğünü göremedi. Bu kuyrukluyıldız, o günden beri Halley’nin şerefine, “Halley Kuyrukluyıldızı” olarak adlandırılıyor.

Bu bilgi ile astronomlar ve tarihçiler, aynı kuyrukluyıldız hakkında nesiller ve kıtalara yayılmış kayıtlar buldular. MÖ 5. yüzyılda Yunanistan’da ve MÖ 3. yüzyılda Çin’de gözlemlenen kuyrukluyıldızlar, Halley’nin tüm kendine has niteliklerini taşıyor. Halley Kuyrukluyıldızı, meşhur Bayeux işlemesinde de görünüyor. İç Güneş sistemini son ziyareti 1986 yılında gerçekleşti, bir sonraki dönüşü ise 2061 yılında olacak.

Bradley ve ışığın sapması

Galileo, Kepler, Newton ve Halley’nin başarılarına rağmen Brahe ve Kopernik modeli üzerine yapılan hararetli tartışmalar devam etti. Dünya’nın aslında Güneş etrafında döndüğüne dair inkâr edilemeyecek bir kanıt hâlâ yoktu. Hem Paris’teki Picardi hem de Greenwich’teki Flamsted, mevsim ne olursa olsun aynı noktada gözüken Kutupyıldızı’nın aslında yıl içinde az da olsa ileri ve geri hareket ettiğini fark etti. Bu duruma kesin bir açıklama getirecek ve bu açıklama ile Dünya merkezli tüm modelleri geçersiz kılacak kişi, Halley’nin ölümünden sonra Kraliyet Astronomu unvanını alan James Bradley oldu.

Yıldız ışıklarının Dünya’nın üzerine tıpkı yağmur gibi düştüğünü düşünün. Dikey yağan yağmurda yürüdüğünüzde, damlaların şemsiyenize yatık bir açıyla vurduğunu görürsünüz.


Yağan yağmurun altında hareket ettiğinizde damlalar, şemsiyenize belli bir açıyla vuruyormuş gibi görünür.


Aslında yağmur bu açıyla düşmez, bu etkiyi yaratan şey sizin yağmur altındayken yaptığınız harekettir. Benzer şekilde Dünya, yörüngesinin yarısı boyunca “yıldız ışığı yağmuruna” doğru hareket eder, yörüngesinin diğer yarısı boyunca da ters yöne doğru hareket eder. Geceleri gökyüzündeki yıldızların yıl içinde yerlerinin kısmen değişmesinin sebebi, “ışığın sapması” olarak bilinen bu etkidir. Dünya’nın sabit olduğu Tycho Brahe’nin modeli doğru olsaydı böyle bir etkinin olmaması gerekirdi. Nihayet 1729 yılında Bradley, Güneş merkezli Kopernik sisteminde yaşadığımıza dair çok sağlam bir kanıt sundu. Ancak Katolik Kilisesi, Güneş merkezli sistemi anlatan kitapları 1758 yılına kadar yasaklamaya devam etti.

Venüs Geçişi

Dünya da tıpkı diğer gezegenler gibi bir gezegen olarak kabul edilince astronomlar, dikkatlerini Güneş’ten ne kadar uzak olduğumuza çevirdiler. 18. yüzyılda bu mesafeyi ölçmenin tek yolu Venüs Geçişi olarak adlandırılan nadir bir astronomik olayı gözlemlemekten geçiyordu. Venüs Geçişi, Venüs’ün bizim bakış açımıza göre doğrudan Güneş’in önünden geçmesine denir ve küçük bir Güneş tutulması gibidir.

Eğer bu geçişi Dünya üzerindeki iki farklı yerden (birbirinden ne kadar uzak o kadar iyi) gözlemleyebilseydiniz başlama ve bitiş zamanlarının farklı olduğunu görürdünüz, çünkü Güneş’i kısmen farklı açılardan izliyor olurdunuz. Halley bu zaman farklılığını Dünya ve Venüs arasındaki mesafeyi ölçmek için kullanabileceğimizi fark etmişti. Sonra da Kepler’in üçüncü yasasıyla bu mesafeyi artırarak Dünya ve Güneş arasındaki mesafeyi bulabilirdik.

Ancak gezegenin, bize olan mesafesinden dolayı küçük gözükmesi yüzünden bu tür olayları teleskopsuz gözlemlemek zor. Geçişler, aralarında sekiz yıl bulunan iki geçiş olarak gerçekleşiyor, ancak sonrasında diğer ikilinin geçişi için bir asırdan fazla beklemeniz gerekiyor.

Johannes Kepler gezegensel hareket yasalarını kullanarak 1631 yılında bir geçiş gerçekleşeceğini tahmin etti, bu tahmin bir ilkti. Haklıydı da, ancak geçiş gerçekleştiği sırada Avrupa’da gece saatleriydi ve kimse göremedi. İngiliz astronom Jeremiah Horrocks, 1639 yılında başka bir geçiş olacağını öngördü ve geçişi evinin yakınlarındaki Preston’dan izleyerek bu olayı ilk gözlemleyen insan oldu. Edmund Halley, bu tür olayları kullanarak Güneş’e olan uzaklığımızı hesaplamaya yarayacak yöntemi 1691 yılında bulmuştu; ancak astronomlar, bu yöntemi kullanmak için 1761 ve 1769 yıllarında gerçekleşecek diğer iki geçişi beklemek zorundaydılar.

Hem bu ölçümün öneminden hem de böyle bir fırsatın neredeyse 200 yılda bir gelmesinden dolayı 18. yüzyıl astronomları bu şansı kaçırmamak için muazzam mesafeler katettiler. Avrupa’daki gözlemevleri, 1761 ve 1769 yılında gerçekleşecek olan geçişleri gözlemlemek ve hava koşullarının işleri baltalamasını önlemek için, yerkürenin her bir yanına astronomlardan oluşan takımlar gönderdi. Eğer bir takımın gittiği yerde hava bulutluysa diğer takımın gittiği yerde açık bir hava olacaktı.

The Royal Society, 1769’daki geçişi Tahiti’de gözlemlemesi için Kaptan James Cook kumandasındaki HMS Endeavour gemisini görevlendirdi. Cook aynı zamanda İngiliz hükümeti tarafından mühürlenmiş emirler de taşıyordu. Bu emirler, geçiş gerçekleştikten sonra Cook’un ne yapacağıyla ilgiliydi ve keşfedilmemiş bir kıtanın söylentisi üzerine Pasifik’in araştırılmasını içeriyordu.

29 Nisan 1770 tarihinde Cook, Botany Körfezi’ne (günümüzde Sidney şehrinde) yanaştı ve burada Avustralya anakarasındaki ilk Avrupa kökenli yerleşim yerini kurdu.

Tahiti’den gözlemlenen Venüs geçişi sırasındaki ölçümler Dünya ve Güneş arasındaki mesafenin 93.726.900 mil (150.838.824 kilometre) olduğunu gösteriyordu. Bugün ise bu mesafenin 149.600.000 kilometre olduğunu biliyoruz; yani 18. yüzyıl astronomları kısıtlı teknolojilerine rağmen, doğru sayıya son derece yakın bir sonuç bulmuşlardı.

Dünya’yı tartmak

Astronomlar, gezegenlerin ne kadar ağır olduklarını da bilmek istiyorlardı. 18. yüzyılda Dünya’nın kütlesi bile bir gizemdi. Kuyrukluyıldızlar konusundaki onca başarısına rağmen Edmund Halley, Dünya’nın içinin boş olduğunu düşünmüştü. 1774 yılında bir diğer Kraliyet Astronomu Nevil Maskelyne, öyle olmadığını kanıtladı.

Newton’ın Principia’yı yayımlamasından beri, evrendeki her bir cismin bir diğerine karşı çekim kuvvetine maruz kaldığını biliyoruz. Cisim ne kadar yakınsa çekim kuvveti de o kadar fazlalaşıyor. Newton da bu etkiyi kullanarak Dünya’nın ağırlığını hesaplamayı düşündü. Büyük bir dağa yakın tutulan bir sarkaç hayal etti. Sarkacın ucundaki top üç kuvvete maruz kalıyordu: Dağa karşı bir çekim, Dünya’ya karşı bir çekim ve sarkaç topunu tutan ipin gerilimi. Sonuç, sarkaç topunun, dağın yönüne kısmen dikey bir hal alması çıkmıştı. Burada dağın ve Dünya’nın çekimi, ipteki gerilimin gücüyle uyuşuyordu. Eğer dağın kütlesini ve sarkaç topunun saptığı açıyı hesaplayabilseydiniz Dünya’nın kütlesini hesaplamak için Newton’ın denklemlerini kullanabilirdiniz.

Newton bu deneyi pratiğe dökmekten vazgeçti, çünkü sarkaç topunun sapmasını hesaplamanın çok zor olacağını düşündü. Ancak Maskelyne bu görevi devraldı. Simetrik ve konik şeklinden dolayı İskoçya’daki 1.083 metrelik Schiehallion tepesini seçti. Koninin hacmini hesaplamak görece kolaydır ve eğer dağı oluşturan taşın yoğunluğunu biliyorsanız kütlesini de hesaplayabilirsiniz. Maskelyne dağın her iki tarafına gözlem noktaları kurdu, kötü hava şartları yüzünden aksilikler yaşansa da nihayet yıldızları referans noktası alarak sarkacın sapma açısını ölçtü. Daha sonra topograf Charles Hutton, dağın hacmini bulma konusundaki çalışmalarına başladı. Sonucu daha kolay bulmak için dağı bölümlere ayırdı ve bunu yaparken izohips (eşyükselti) eğrilerini keşfetti.



Maskelyne’in takımı Dünya’nın yoğunluğunu, her santimetre küp için 4,5 gram ortalama yoğunluk olarak buldu (günümüz değeri 5,5g/cm3). Schiehallion dağının ortalama yoğunluğu 2,5g/cm3 olduğuna göre yeryüzünün altında dağdan çok daha ağır bir madde olmalıydı; gezegenimizin içi boş falan değildi. Bu noktaya kadar Güneş’in, Ay’ın ve diğer gezegenlerin yoğunlukları Dünya’nın yoğunluğunun katları olarak biliniyordu. Ancak eğer Dünya’nın ortalama yoğunluğu bilinirse astronomlar, Güneş sistemindeki diğer büyük cisimlerin hacimleri ve yoğunlukları hakkında da bir şeyler söyleyebilirlerdi. İskoçya’daki bir dağ, Güneş sistemindeki diğer gezegenleri daha iyi tanımak için adeta örnek bir terazi görevi gördü.

Herschel ve Uranüs

13 Mart 1781’de William Herschel, bir gecede Güneş sisteminin bilinen sınırlarını iki katına çıkardı. İngiltere’nin Bath şehrindeki evindeyken Güneş’e Satürn’den iki kat uzak olan yepyeni bir gezegen keşfetti. Diğer tüm gezegenler antik çağlardan beri bilindiğinden, gerçekten ilk defa yeni bir gezegen keşfedilmişti. Daha sonra ortaya çıktı ki Greenwich’teki kraliyet astronomları da dahil birçok astronom aslında Uranüs’ü görmüştü, ancak cisim tutulum çemberi üzerinde o kadar yavaş hareket ediyordu ki hep sabit yıldızlardan biri sanmışlardı. Başlangıçta Herschel de bir kuyrukluyıldız olduğunu düşündü, sonra ise gerçeği anladı.

Bu yeni buluşa evrensel bir isim verilmesi ise neredeyse yüz yılı buldu. İsim verme hakkına, kâşif olarak Herschel sahipti. O da kendisini astronom olarak işe alan Kral III. George’a ithafen “Georgium Sidus (George’un Yıldızı)” ismini seçti. Tahmin edebileceğiniz gibi bu isim diğer ülkeler için o kadar da uygun değildi. 1782’de Uranüs (Yunan gökyüzü tanrısı) uygun bir alternatif olarak sunuldu; çünkü Uranüs, Kronos’un (Satürn) babasıydı, Kronos da Zeus’un (Jüpiter) babasıydı. Gelgelelim bu ismin resmi olarak kullanılmaya başlaması 1850’leri buldu. Bu isim, gezegeni diğerlerinden bir nebze öne çıkarıyor. Çünkü diğer tüm gezegenler (Dünya hariç) Roma tanrılarının adını taşıyorken Uranüs adını bir Yunan tanrısından alan tek gezegen.

Herschel ve kızılötesi ışın

1800 yılında Herschel, belki de yeni bir gezegen bulmaktan çok daha önemli bir buluşa imza atmıştı: Yepyeni bir ışık türü bulmuştu.

Tıpkı bir asır önce Newton’ın yaptığı gibi o da prizmalarla deney yapıyordu. Renk ve sıcaklık arasında bir bağlantı olduğundan şüphelendi. Bu yüzden güneş ışığını bir prizmadan geçirdi ve ortaya çıkan ışık tayfındaki her bir rengin önüne bir termometre yerleştirdi. Renklerdeki en yüksek sıcaklığın, ışık tayfının sonunda bulunan kırmızı ışıkta olduğunu gördü. Ancak sonra muhteşem bir şey yaptı: Termometreyi kırmızı ışığın hemen yanına, yani görünürde hiç ışık bulunmayan bir yere taşıdı. Termometresi burada, ışık tayfının herhangi bir yerindekine kıyasla çok daha fazla sıcaklık gösteriyordu.

Herschel, ışık tayfının sonundaki kırmızının ötesinde, görünmeyen bir “ısıl ışın” olduğunu düşündü. Sonraki deneyleri gösterdi ki bu ışınlar, tıpkı sıradan ışık ışınları gibi davranıyordu. Onun bulduğu bu ışık türünü bizler, kızılötesi olarak biliyoruz. Kızılötesi ışın, sıcak cisimler tarafından yayılan görünmez ışığa deniyor; bu yüzden kızılötesi kameralar polis takiplerinde, savaş alanlarında ve arama kurtarma çalışmalarında canlı takibi yapmakta kullanılıyor.

2.The Royal Society, 1662’de kurulmuş bir bilim topluluğudur. Birleşik Krallık’ın Bilimler Akademisi olarak görevini yapmakta olup araştırma derneklerine ve bilimsel kuruluşlara yatırım yapmaktadır. (ç.n.)

Ücretsiz ön izlemeyi tamamladınız.

₺60,26

Türler ve etiketler

Yaş sınırı:
0+
Litres'teki yayın tarihi:
03 temmuz 2023
Hacim:
27 s. 46 illüstrasyon
ISBN:
978-605-7605-87-0
Telif hakkı:
Maya Kitap
Metin PDF
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre
Metin PDF
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre
Ses
Ortalama puan 5, 2 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre