Kitabı oku: «The Asteroids; Or Minor Planets Between Mars and Jupiter», sayfa 6

Yazı tipi:

11. Origin of the Asteroids

But four minor planets had been discovered when Laplace issued his last edition of the "Système du Monde." The author, in his celebrated seventh note in the second volume of that work, explained the origin of these bodies by assuming that the primitive ring from which they were formed, instead of collecting into a single sphere, as in the case of the major planets, broke up into four distinct masses. But the form and extent of the cluster as now known, as well as the observed facts bearing on the constitution of Saturn's ring, seem to require a modification of Laplace's theory. Throughout the greater part of the interval between Mars and Jupiter an almost continuous succession of small planetary masses—not nebulous rings—appears to have been abandoned at the solar equator. The entire cluster, distributed throughout a space whose outer radius exceeds the inner by more than two hundred millions of miles, could not have originated, as supposed by Laplace, in a single nebulous zone the different parts of which revolved with the same angular velocity. The following considerations may furnish a suggestion in regard to the mode in which these bodies were separated from the equator of the solar nebula.

(a) The perihelion distance of Jupiter is 4.950, while the aphelion distance of Hilda is 4.623. If, therefore, the sun once extended to the latter, the central attraction of its mass on an equatorial particle was but five times greater than Jupiter's perihelion influence on the same. It is easy to see, then, that this "giant planet" would produce enormous tidal elevations in the solar mass.

(b) The centrifugal force would be greatest at the crest of this tidal wave.

(c) Three periods of solar revolution were then about equal to two periods of Jupiter. The disturbing influence of the planet would therefore be increased at each conjunction with this protuberance. The ultimate separation (not of a ring but) of a planetary mass would be the probable result of these combined and accumulating forces.

12. Variability of Certain Asteroids

Observations of some minor planets have indicated a variation of their apparent magnitudes. Frigga, discovered by Dr. Peters in 1862, was observed at the next opposition in 1864; but after this it could not be found till 1868, when it was picked up by Professor Tietjen. From the latter date its light seems again to have diminished, as all efforts to re-observe it were unsuccessful till 1879. According to Dr. Peters, the change in brightness during the period of observation in that year was greater than that due to its varying distance. No explanation of such changes has yet been offered. It has been justly remarked, however, that "the length of the period of the fluctuation does not allow of our connecting it with the rotation of the planet."

13. The Average Asteroid Orbit

At the meeting of the American Association for the Advancement of Science in 1884, Professor Mark W. Harrington, of Ann Arbor, Michigan, presented a paper in which the elements of the asteroid system were considered on the principle of averages. Two hundred and thirty orbits, all that had then been determined, were employed in the discussion. Professor Harrington supposes two planes to intersect the ecliptic at right angles; one passing through the equinoxes and the other through the solstices. These planes will intersect the asteroidal orbits, each in four points, and "the mean intersection at each solstice and equinox may be considered a point in the average orbit."

In 1883 the Royal Academy of Denmark offered its gold medal for a statistical examination of the orbits of the small planets considered as parts of a ring around the sun. The prize was awarded in 1885 to M. Svedstrup, of Copenhagen. The results obtained by these astronomers severally are as follows:


These elements, with the exception of the first, are in reasonable harmony.

14. The Relation of Short-Period Comets to the Zone of Asteroids

Did comets originate within the solar system, or do they enter it from without? Laplace assigned them an extraneous origin, and his view is adopted by many eminent astronomers. With all due respect to the authority of great names, the present writer has not wholly abandoned the theory that some comets of short period are specially related to the minor planets. According to M. Lehmann-Filhès, the eccentricity of the third comet of 1884, before its last close approach to Jupiter, was only 0.2787.12 This is exceeded by that of twelve known minor planets. Its mean distance before this great perturbation was about 4.61, and six of its periods were nearly equal to five of Jupiter's,—a commensurability of the first order. According to Hind and Krueger, the great transformation of its orbit by Jupiter's influence occurred in May, 1875. It had previously been an asteroid too remote to be seen even in perihelion. This body was discovered by M. Wolf, at Heidelberg, September 17, 1884. Its present period is about six and one-half years.

The perihelion distance of the comet 1867 II. at its return in 1885 was 2.073; its aphelion is 4.897; so that its entire path, like those of the asteroids, is included between the orbits of Mars and Jupiter. Its eccentricity, as we have seen, is little greater than that of Æthra, and its period, inclination, and longitude of the ascending node are approximately the same with those of Sylvia, the eighty-seventh minor planet. In short, this comet may be regarded as an asteroid whose elements have been considerably modified by perturbation.

It has been stated that the gap at the distance 3.277 is the only one corresponding to the first order of commensurability. The distance 3.9683, where an asteroid's period would be two-thirds of Jupiter's, is immediately beyond the outer limit of the cluster as at present known; the mean distance of Hilda being 3.9523. The discovery of new members beyond this limit is by no means improbable. Should a minor planet at the mean distance 3.9683 attain an eccentricity of 0.3—and this is less than that of eleven now known—its aphelion would be more remote than the perihelion of Jupiter. Such an orbit might not be stable. Its form and extent might be greatly changed after the manner of Lexell's comet. Two well-known comets, Faye's and Denning's, have periods approximately equal to two-thirds of Jupiter's. In like manner the periods of D'Arrest's and Biela's comets correspond to the hiatus at 3.51, and that of 1867 II. to that at 3.277.

Of the thirteen telescopic comets whose periods correspond to mean distances within the asteroid zone, all have direct motion; all have inclinations similar to those of the minor planets; and their eccentricities are generally less than those of other known comets. Have these facts any significance in regard to their origin?

12.Annuaire, 1886.
Yaş sınırı:
0+
Litres'teki yayın tarihi:
01 mart 2019
Hacim:
41 s. 13 illüstrasyon
Telif hakkı:
Public Domain
İndirme biçimi: