Kitabı oku: «The Glass Universe: The Hidden History of the Women Who Took the Measure of the Stars», sayfa 2
Pickering felt, furthermore, that participating in astronomical research would improve women’s social standing and justify the current proliferation of women’s colleges: “The criticism is often made by the opponents of the higher education of women that, while they are capable of following others as far as men can, they originate almost nothing, so that human knowledge is not advanced by their work. This reproach would be well answered could we point to a long series of such observations as are detailed below, made by women observers.”
Pickering printed and distributed hundreds of copies of this open invitation, and also convinced the editors of several newspapers to publish it. Two early responses arrived in December 1882 from Eliza Crane and Mary Stockwell at Vassar College in Poughkeepsie, New York, followed by another from Sarah Wentworth of Danvers, Massachusetts. Pickering began assigning particular variables to individuals for observation. Although his volunteers lacked any equipment as sophisticated as the meridian photometer, they could compare their variables with other nearby stars, and estimate the brightness changes over time. “If any of the stars become too faint,” he advised them by letter, “please send word, so that observations may be attempted here” with the large telescope.
Some women wrote to request formal instruction in practical or theoretical astronomy, but the observatory provided no such courses, nor could it admit curious spectators, male or female, at night. During the day, the director would be only too pleased to show visitors around the building.
Pickering’s daytime duties as director required him to correspond regularly with other astronomers, purchase books and journals for the observatory’s library, attend scientific meetings, edit and publish the Annals of the Astronomical Observatory of Harvard College, oversee finances, answer inquiries by mail from the general public, host visiting dignitaries, and order supplies large and small, from telescope parts to furnace coal, stationery, pens, ledgers, even “water closet paper.” Every bit of observatory business demanded his personal attention or at the very least his signature. Only when a blanket of clouds hid the stars could he find a night’s sleep.
• • •
MRS. DRAPER’S GLASS PLATES demanded examination by daylight. Although Pickering had heard much about these images, and even discussed them with the doctor the night of the Academy dinner in November, he had not seen them till now. He was accustomed to looking at spectra—the separated rays of starlight—through the telescope, using attachments called spectroscopes that former director Joseph Winlock had purchased in the 1860s, when spectroscopy came into vogue. The live view through the spectroscope turned a star into a pale strip of colored light ranging from reddish at one end through orange, yellow, green, and blue to violet at the other. The spectroscope also made visible many black vertical lines interspersed at intervals along the colored strip. Astronomers believed that the breadth, intensity, and spacing of these spectral lines encoded vital information. Though the code remained unbroken, a few investigators had proposed schemes to classify the stars by type, according to the similarities in their spectral line patterns.
On the Draper plates, each spectrum looked like a gray smudge barely half an inch long, yet some contained as many as twenty-five lines. As Pickering viewed them under a microscope, their detail stupefied him. What skill their capture demonstrated, and what luck! He knew of only one other person in the world—Professor William Huggins of England—who had ever succeeded in capturing a stellar spectrum on a photographic plate. Huggins was also the only man of Pickering’s acquaintance, aside from Dr. Draper, to have discovered an able astronomical assistant in his own wife, Margaret Lindsay Huggins.
Mrs. Draper agreed to leave her plates in Pickering’s care for a complete analysis, and returned to New York. She promised Mrs. Pickering, who was considered one of Cambridge’s most accomplished gardeners, to visit again in spring or summer, in the hope of seeing the observatory grounds in full bloom.
Pickering measured each spectrum with a screw-thread micrometer. By February 18, 1883, he could report to Mrs. Draper that he was finding “much more in the photographs than appears at first sight.” The computers had plenty to do in graphing the readings from his every half-turn of the screw, then applying a formula and computations to translate them into wavelengths. It became clear that Dr. Draper had demonstrated the feasibility of studying the stellar spectra by means of photography, instead of by peering through instruments and drawing a record of what the eye saw.
Pickering again pressed Mrs. Draper to publish an illustrated account, not merely to establish priority for her husband, but, more important, to show other astronomers the great promise of his technique.
For help with the preparation of the paper, Mrs. Draper asked a noted authority on the solar spectrum, Charles A. Young of Princeton, to contribute an introduction outlining Henry’s methods. Meanwhile she catalogued all seventy-eight plates in the spectra series, relying on Henry’s notebooks to specify the date and time of each photograph taken, the star name, the length of every exposure, the telescope used, and the width of the spectroscope slit, plus incidental remarks about observing conditions, such as “There was blue fog in the sky” or “The night was so windy that the dome was blown around.”
Pickering summarized the twenty-one plates he had scrutinized in ten tables with explanations. He reported the distances between spectral lines, stating the methodology and mathematical formulas employed to translate line positions into wavelengths of light. He also commented on the similar work being done by William Huggins in London, and ventured to categorize some of Draper’s spectra by Huggins’s criteria. When he sent his draft to Mrs. Draper for approval, she balked at the mention of Huggins.
“Dr. Draper did not agree with Dr. Huggins,” she wrote Pickering on April 3, 1883, concerning two of the stars in the series. Their nearly identical spectra both showed wide bands, which had made Huggins classify the two stars as a single type, but the Draper photographs revealed that one of these stars also had many fine lines between the bands, which set it apart from the other. “In view of this I should not like to accept Mr. Huggins’ classification as the standard when Dr. Draper did not agree with it.” Although Pickering had seen the abundance of fine lines she described, he found them too delicate for satisfactory measurement.
“You will not I hope be annoyed at my criticism,” Mrs. Draper added, “but I feel in publishing any of Dr. Draper’s work that I want his opinions represented as nearly as possible, now that he is not here to explain them himself.”
The Drapers had met William and Margaret Huggins while visiting London in June 1879, at the Hugginses’ home observatory on Tulse Hill. Mrs. Draper recalled Mrs. Huggins as a petite woman with short, unruly hair that stuck straight out from her head as though galvanized. She was half the age of her husband, but a full participant in his studies, both at the telescope and in the laboratory.
The two couples seemed destined to become either rivals or intimates. William gave Henry the benefit of his lengthier experience by offering helpful advice about spectroscope design. He also recommended a new type of dry, pretreated photographic plate that had lately come on the market. There was no need to paint liquid emulsion on these plates just prior to exposing them, and consequently they allowed for much longer exposure times. Before leaving England, the Drapers purchased a supply of Wratten & Wainwright’s London Ordinary Gelatin Dry Plates, which proved a boon indeed. They were particularly sensitive to the ultraviolet wavelengths of light, beyond the range of human vision. Unlike the old wet plates, the dry ones created a permanent record suitable for precision measurement. The dry plates gave the Drapers the wherewithal to photograph the spectra of the stars.
• • •
THE PAPER ANNOUNCING the stellar spectra findings, “by the late Henry Draper, M.D., LL.D.,” appeared in the Proceedings of the American Academy of Arts and Sciences in February 1884. Pickering mailed copies to prominent astronomers everywhere. By return mail dated March 12, he received William Huggins’s indignant reaction. Huggins found some of Pickering’s measurements “very wild,” the letter said with emphasis. “I should be glad if you could see your way to look into this, because it would be better that you should discover the error & publish the correction, than that the matter should be pointed out by others. … My wife unites in kind regards to you and Mrs. Pickering.”
Pickering was certain he had not erred. And, as Huggins had never explicated his measurement procedures, Pickering stood firmly by his own. As they traded charges, Pickering forwarded Huggins’s letters to Mrs. Draper.
Now it was her turn to grow indignant. “I felt very sorry,” she wrote Pickering on April 30, 1884, “that you should have been subjected to such an ungentlemanly attack, through your interest in Dr. Draper’s work.” Before returning the letters to Pickering, she took the liberty of copying one, since “it is worth preserving as a curiosity of epistolatory literature.”
During this same time, Pickering was seeking assistants who might help Mrs. Draper advance her husband’s work to the next stage. He considered former director Joseph Winlock’s son, William Crawford Winlock, currently employed at the U.S. Naval Observatory, to be a very likely prospect, but Mrs. Draper rejected him. To her regret, she could not induce her preferred candidate, Thomas Mendenhall, to leave his professorship at Ohio State University. She channeled some of her frustration into the creation of the Henry Draper gold medal, to be awarded periodically by the National Academy of Sciences for outstanding achievements in astronomical physics. She gave the Academy $6,000 to endow the prize fund, and spent another $1,000 commissioning an artist in Paris to fashion a medal die featuring Henry’s likeness.
The spring of 1884 brought Pickering new money worries. The successful five-year subscriptions from generous astronomy enthusiasts had run their course, ending the accustomed annual stipend of $5,000. The director was covering various operating expenses out of his own salary, and even so was forced to let go five assistants. In a touching show of solidarity, observatory colleagues took up a collection to retain one of those who had been dismissed, and furnished “part of the required sum,” Pickering told his circle of advisers, “from their own scanty means.” He appreciated the “extraordinary efforts on the part of the observers, who have performed without assistance the work in which they were previously aided by recorders. This has required an increase in the time spent in observation, and has rendered the work much more laborious. While this evidence of enthusiasm and devotion to science is most gratifying, it is obvious that it cannot long be continued without injury to health. Indeed, the effects of over-fatigue and exposure during the long, cold nights of last winter were manifest in more than one instance.”
The motto on the Pickering family coat of arms, “Nil desperandum,” plus the lifelong habit of his own thirty-seven years, obliged the director to substitute resourcefulness and resilience for despair. He began formulating a means of combining Mrs. Draper’s wishes and wealth with the capabilities and needs of his observatory.
“I am making plans for a somewhat extensive piece of work in stellar photography in which I hope that you may be interested,” he informed her in a letter of May 17, 1885.
Pickering intended to redirect most of the observatory’s projects along photographic lines. His predecessors the Bonds had recognized the promise of photography, and achieved the first photograph of a star in 1850, but the limitations of the wet plates had impeded further attempts. With the new dry plates, possibilities multiplied. Determinations of stellar brightness and variability would surely prove easier and more accurate on photographs, which could be examined, reexamined, and compared at will. A methodical program for photographing the entire sky would transform the painstaking process of zone mapping. As a bonus, these photographs would reveal untold numbers of unknown faint stars, invisible even through the world’s biggest telescopes, because the sensitive plate, unlike the human eye, could gather light and aggregate images over time.
Pickering’s younger brother, William, a recent graduate of MIT, was already teaching photographic technique there and testing the limits of the art by trying to photograph objects in motion. The twenty-seven-year-old William had consented to assist Edward in a few photographic experiments with the Harvard telescope. One of their pictures yielded 462 stars in a region where only 55 had been previously documented.
The part of Pickering’s plan with the greatest potential interest for Mrs. Draper concerned a new approach to photographing stellar spectra. Rather than focus on one target star at a time, à la Draper or Huggins, Pickering anticipated group portraits of all the brightest stars in a wide field of view. To achieve these, he envisioned a new instrument setup combining telescope and spectroscope with the type of lens used in the studios of portrait photographers.
“I think there will be no difficulty in carrying out this plan without your aid,” he assured Mrs. Draper. “On the other hand, if it commends itself to you, I am confident that we could make it conform to such conditions as you might impose.”
“Thanks for your kindness,” she replied on May 21, 1885, “in remembering my desire to be interested in some work with which Dr. Draper’s name could be associated, and his memory kept alive. I will be glad to cooperate, if I can, in what you suggest, for its bearing on stellar spectrum photography appeals to me very strongly.” More than two years had passed since Henry’s death. Still unable to make his observatory productive, she saw no harm in lending his name to Harvard.
Pickering proceeded slowly and with caution, apprising her of his progress until he could send her some sample images of stellar spectra taken through his new apparatus. She found them “exceedingly interesting.” On January 31, 1886, she said, “I would be willing, if the plan could be carried out satisfactorily, to authorize the expenditure of $200 a month or somewhat more if necessary.” Pickering thought more would be needed. They settled terms on Valentine’s Day for the Henry Draper Memorial—an ambitious photographic catalogue of stellar spectra, gathered on glass plates. Its goal was the classification of several thousand stars according to their various spectral types, just as Henry had set out to do. All results would be published in the Annals of the Harvard College Observatory.
On February 20, 1886, Mrs. Draper sent Pickering a check for $1,000, the first of many installments. Pickering publicized the new undertaking in all the usual places, including Science, Nature, and the Boston and New York newspapers.
Later that spring Mrs. Draper decided to increase her already generous gift by donating one of Henry’s telescopes. She visited Cambridge in May to make the arrangements. Since the instrument needed a new mounting—something Henry had meant to build himself—she asked George Clark of Alvan Clark & Sons to fabricate the parts, at a cost of $2,000, and to oversee the transfer of the equipment from Hastings to Harvard. Once arrived, it would require its own small building with a dome eighteen feet in diameter, and Mrs. Draper meant to cover that expense as well. Together with the Pickerings, she strolled among the plantings of rare trees and shrubs around the observatory to select a site for the new addition.
CHAPTER TWO
What Miss Maury Saw
THE INFUSION OF FUNDS for the Henry Draper Memorial made the Harvard College Observatory hum with new people and purpose. Construction of the small building to house Dr. Draper’s telescope started in June 1886 and continued through the summer while Mrs. Draper toured Europe. In October the instrument was mounted in the new dome. Now there were two telescopes outfitted for nightly rounds of spectral photography—the Draper 11-inch and an 8-inch purchased with a $2,000 grant from the Bache Fund of the National Academy of Sciences. The illustrious Great Refractor, through which the first-ever photograph of a star had been taken in 1850, later proved unsuitable for photography. Its 15-inch lens had been fashioned for visual observing; that is, for human eyes most attuned to yellow and green wavelengths of light. The lenses of the two new instruments, in contrast, favored the bluer wavelengths to which photographic plates were sensitive. The 8-inch Bache telescope also boasted a wide field of view for taking in huge tracts of sky all at once, rather than homing in on single objects.
In less than a decade at the helm, Edward Pickering had shifted the observatory’s institutional emphasis from the old astronomy, centered on star positions, to novel investigations into the stars’ physical nature. While half the computing staff continued to calculate the locations and orbital dynamics of heavenly bodies, a few of the women were learning to read the glass plates produced on-site, honing their skills in pattern recognition in addition to arithmetic. A new kind of star catalogue would soon emerge from these activities.
The earliest known star counter, Hipparchus of Nicaea, catalogued a thousand stars in the second century BC, and later astronomers enumerated the content of the heavens to ever better effect. The projected Henry Draper Catalogue would be the first in history to rely entirely on photographs of the sky and to specify the “spectrum type,” as well as the position and brightness, for myriad stars.
Dr. and Mrs. Draper had gathered their spectra one by one, using a prism at the telescope’s eyepiece to split the light of each star. Pickering and his assistants, eager to increase the pace of operations, altered the Drapers’ approach. By installing prisms at the objective, or light-gathering end of the telescope, instead of at the eyepiece, they were able to capture group portraits containing two or three hundred spectra per plate. The prisms were large, square sheets of thick glass, wedge-shaped in cross section. “The safety and convenience of handling the prisms,” Pickering found, “is greatly increased by placing them in square brass boxes, each of which slides into place like a drawer.” Harvard’s picture gallery grew apace. When Mrs. Draper paid another visit soon after Thanksgiving, Pickering assured her that any star visible from Cambridge appeared on at least one of the glass plates.
Toward the end of December 1886, just when the staff had smoothed out most of the difficulties with the new procedures, Nettie Farrar’s beau proposed. Pickering was all in favor of marriage, of course, but he hated to lose Miss Farrar, a five-year veteran of the computing corps whom he had personally trained to measure spectra on the photographic plates. On New Year’s Eve, he wrote to inform Mrs. Draper of Miss Farrar’s engagement, and also to name Williamina Fleming, the former maid, as her replacement.
Since returning from Scotland in 1881, Mrs. Fleming had been assisting Pickering with photometry. Often she took the director’s penciled notations from the nightly observations with his assistants and applied the formulas he specified to compute the stars’ magnitudes. By 1886, when the Royal Astronomical Society awarded Pickering its gold medal for this work, he had already embarked on a parallel approach to photometry via photography. This change required Mrs. Fleming, well accustomed to reading lists of numbers scribbled in the dark, to judge magnitudes from fields of stars on glass plates.
Mrs. Fleming had let Pickering know that photography ran in her pedigree. Her father, Robert Stevens, a carver and gilder praised for his gold-leaf picture frames, had been the first in the city of Dundee to experiment with daguerreotyping, as the process was called in her childhood. She was still a child, only seven, when her father died suddenly of heart failure. Her mother and older siblings tried, for a time, to keep the business running without him, but without success. One by one, her older brothers sailed away to Boston, where she eventually followed them. Now, at twenty-nine, she had a seven-year-old child of her own to care and provide for. Edward would soon arrive; her mother was booking passage with him on the Prussian out of Glasgow.
Miss Farrar dutifully introduced Mrs. Fleming to the plates of stellar spectra, and taught her how to measure the hordes of tiny lines. Mrs. Fleming could have taught Miss Farrar a thing or two about marriage and childbirth, but on the subject of the spectrum she had everything to learn.
• • •
THE YOUNG ISAAC NEWTON coined the word spectrum in 1666, to describe the rainbow colors that arose like ghostly apparitions when daylight passed through cut glass or crystal. Although his contemporaries thought glass corrupted the purity of light by imparting color to it, Newton held that colors belonged to light itself. A prism merely revealed white light’s component hues by refracting them at different angles, so that each could be seen individually.
The microscopic dark lines within the stellar spectra, to which Mrs. Fleming now directed her attention, were called Fraunhofer lines, after Joseph von Fraunhofer of Bavaria, their discoverer. A glazier’s son, Fraunhofer had apprenticed at a mirror factory and gone on to become a master crafter of telescope lenses. In 1816, in order to measure the exact degree of refraction in different glass recipes and lens configurations, he built a device that combined a prism with a surveyor’s small telescope. When he directed a beam of light from the prism through a slit and into the instrument’s magnified field of view, he beheld a long, narrow rainbow marked by many dark lines. Repeated trials convinced him that the lines, like the rainbow colors, were not artifacts of passage through glass, but inherent in sunlight. Fraunhofer’s lens-testing apparatus was the world’s first spectroscope.
Charting his finds, Fraunhofer labeled the most prominent lines with letters of the alphabet: A for the wide black one at the rainbow’s extreme red end, D for a dark double stripe in the orange-yellow range, and so on through the blue and violet to a pair named H, and ending farther along the violet with I.
Fraunhofer’s lines retained their original alphabetical designations through the decades following his death, gaining greater importance as later scientists observed, mapped, interpreted, measured, and depicted them with fine-nib pens. In 1859 chemist Robert Bunsen and physicist Gustav Kirchhoff, working together in Heidelberg, translated the Fraunhofer lines of the Sun’s spectrum into evidence for the presence of specific earthly substances. They heated numerous purified elements to incandescence in the laboratory, and showed that each one’s flame produced its own characteristic spectral signature. Sodium, for example, emitted a close-set pair of bright orange-yellow streaks. These correlated in wavelength with the dark doublet of lines that Fraunhofer had labeled D. It was as though the laboratory sample of burning sodium had colored in those particular dark gaps in the Sun’s rainbow. From a series of such congruities, Kirchhoff concluded the Sun must be a fireball of multiple burning elements, shrouded in a gaseous atmosphere. As light radiated through the Sun’s outer layers, the bright emission lines from the solar conflagration were absorbed in the cooler surrounding atmosphere, leaving dark telltale gaps in the solar spectrum.
Astronomers, many of whom had considered the Sun a temperate, potentially habitable world, were shocked to learn of its inferno-like heat. However, they were soon placated—even soothed—by the revelatory power of spectroscopy to expose the chemical content of the firmament. “Spectrum analysis,” Henry Draper told the Young Men’s Christian Association of New York in 1866, “has made the chemist’s arms millions of miles long.”
Throughout the 1860s, pioneering spectroscopists such as William Huggins discerned Fraunhofer lines in the spectra of other stars. In 1872 Henry Draper began photographing them. While the number of spectral lines in starlight paled in comparison to the rich tapestry of the Sun’s spectrum, several recognizable patterns emerged. It seemed that the stars, which had for so long been loosely categorized by brightness or color, could now be further sorted according to spectral features hinting at their true nature.
In 1866 Father Angelo Secchi of the Vatican Observatory divided four hundred stellar spectra into four distinct types, which he designated by Roman numerals. Secchi’s Class I contained brilliant blue-white stars such as Sirius and Vega, whose spectra shared four strong lines indicating the presence of hydrogen. Class II included the Sun and yellowish stars like it, with spectra full of many fine lines identifying iron, calcium, and other elements. Classes III and IV both consisted of red stars, differentiated by the patterns in their dark spectral bands.
Pickering challenged Mrs. Fleming to improve on this elementary class system. Whereas Secchi had sketched his spectra from direct observations of a few hundred stars, she would enjoy the advantage of the Henry Draper Memorial photographs, boasting thousands of spectra for her scrutiny. The glass plates preserved more faithful portrayals of the positions of Fraunhofer’s lines than drawings could ever provide. Also, the plates picked up lines at the far violet end of the spectrum, at wavelengths the eye could not see.
• • •
MRS. FLEMING REMOVED EACH GLASS PLATE from its kraft paper sleeve without getting a single fingerprint on either of the eight-by-ten-inch surfaces. The trick was to hold the fragile packet by its side edges between her palms, set the bottom—open—end of the envelope on the lip of the specially designed stand, and then ease the paper up and off without letting go of the plate, as though undressing a baby. Making sure the emulsion faced away from her, she released her grip and let the glass settle into place. The wooden stand held the plate in a picture frame, tilted at a forty-five-degree angle. A mirror affixed to the flat base caught daylight from the computing room’s big windows and directed illumination up through the glass. Mrs. Fleming leaned in with her loupe for a privileged view of the stellar universe. She had often heard the director say, “A magnifying glass will show more in the photograph than a powerful telescope will show in the sky.”
Hundreds of spectra hung suspended on the plate. All were small—little more than one centimeter for the brighter stars, only half a centimeter for the fainter ones. Each had to be tagged with a new Henry Draper catalogue number, and also identified by its coordinates, which Mrs. Fleming determined using the millimeter and centimeter rules inscribed on the wooden plate frame. She read off these numbers to a colleague who sat beside her, penciling the information into a logbook. Later they would match the Henry Draper numbers to the stars’ existing names or numbers, if any, handed down from previous catalogues.
In the rune-like lines of the spectra, Mrs. Fleming read enough variety to quadruple the number of star categories recognized by Father Secchi. She replaced his Roman numerals, which quickly grew cumbersome, with Fraunhofer-style alphabetical order. The majority of stars fell into her A category because they displayed only the broad, dark lines due to hydrogen. The B spectra sported a few other dark lines in addition to those of hydrogen, and by her G category the presence of many more lines had become the norm. Type O bore only bright lines, and Q served her as a catchall category for peculiar spectra she could not otherwise pigeonhole.
Pickering applauded Mrs. Fleming’s efforts, even as he conceded the arbitrary, empirical nature of her classification. He predicted that in time, with ever more stars studied, the underlying reasons for the different spectral appearances would reveal themselves. Possibly different stellar temperatures were responsible, or different chemical blends, different stages of stellar development, or some combination of such factors—or something as yet unimagined.
In January 1887 Pickering hit on a way to enlarge some of the spectra from smudge-like traces to an impressive four inches by twenty-four. He astonished Mrs. Draper by sending her several examples. “It scarcely seems possible that stellar spectra can be taken which will bear the enlarging of those that you have sent me,” she wrote on January 23. “I wonder what Mr. Huggins will say when he sees them.” This question stimulated her to strengthen her support of the Henry Draper Memorial, which currently amounted to about $200 a month, by promising $8,000 or $9,000 per year in perpetuity.
There seemed no reason for Mrs. Draper to cling any longer to the dream of continuing her husband’s research herself. She thought it best to divest the Hastings observatory of his remaining telescopes, and donate the lot to Harvard. The largest, with its 28-inch-diameter mirror, would likely prove a significant aid in Pickering’s pursuits. Still she wavered. It had been one thing to part with the 11-inch-aperture refractor, now ensconced at Cambridge, but the 28-inch reflector preserved precious memories of her wedding day.