Kitabı oku: «Цифры врут. Как не дать статистике обмануть себя», sayfa 3
В эксперименте задействовали 42 человек: экспериментальной группе (26 пациентов) давали гидроксихлорохин, контрольной (16 испытуемых) – нет. Даже если бы это исследование было идеально проведено со всех остальных точек зрения (а это не так), оно все равно являлось бы сомнительным из-за небольших размеров выборки. Точно так же как брань может придавать сил, так и гидроксихлорохин может как-то влиять на ковид. Но так же вероятно, что он не оказывает никакого влияния, а возможно, и наносит серьезный вред. Исследование не дает уверенных оснований для вывода. Тем не менее СМИ раструбили о нем всему миру.
Глава 4
Смещенные выборки
В апреле 2020-го The Sun и Daily Mail опубликовали сенсационную новость: любимый локдаунский перекус британцев – барабанная дробь! – тосты с сыром. Это горячее молочно-цельнозерновое блюдо получило 22 % голосов и опередило чипсы с сыром и луком всего на 1 %, отбросив конкурента с его 21 % на близкое, но все равно обидное второе место. Также в группу лидеров вошли сэндвичи с беконом (19 %), шоколадные кексы (19 %) и крекеры с сыром (18 %).
В предыдущей главе мы видели, как выборки небольшого объема, случайно оказавшись неудачными, искажают результаты. Вывод же о перекусах делался на основе опроса онлайн-банка Raisin, в котором участвовало две тысячи человек. Звучит убедительно?
Только вот исследование может оказаться недостоверным и по другим причинам. Самая очевидная – выборка не представляет население в целом.
Ранее мы проводили мысленный эксперимент – вычисляли средний рост населения, измеряя случайных прохожих. А теперь представьте, что вы делаете это на съезде баскетболистов, – и мимо вас – внезапно – дефилируют толпы двухметровых людей. Средний рост в вашей выборке резко подскочит, хотя для населения в целом останется неизменным.
Такая выборка называется смещенной, или предвзятой. Обычно так говорят о людях: судья предвзято относится к моей команде; СМИ предвзято подходят к моей любимой политической партии. Статистическая предвзятость – про то же самое. Представьте, что вы проводите опрос – «Назовите лучший футбольный клуб за всю историю Англии?» – сначала на Энфилд-Роуд, а потом на Сэр Мэтт Басби-Уэй. Вы получите совершенно разные результаты, потому что у вас будут совершенно разные выборки. 78
Вред от смещенных выборок отличается от вреда маленьких. При выборе небольших групп случайным образом вы, по крайней мере, при увеличении размеров выборки приближаетесь к точному результату. А при смещенных выборках этого не происходит – будет расти лишь ваша уверенность в неверном результате.
Например, в преддверии общенациональных выборов 2019 года Джереми Корбин, тогдашний лидер лейбористской партии, и Борис Джонсон, премьер-министр и лидер тори, провели теледебаты.
После этого компания YouGov, специалист по политопросам, выяснила, что среди телезрителей мнения о том, кто же был убедительнее, разделились почти поровну: 48 % считали, что Джонсон, 46 % – Корбин и еще 7 % не могли определить победителя. (Да, в сумме получается 101 %. Так бывает, если округлять числа до ближайшего целого.)
Это вызвало споры в интернете. В одном вирусном твите (более 15 000 лайков на настоящий момент) упоминалось, что результаты других опросов резко отличались от данных YouGov9 (см. рисунок на следующей странице).
Четыре из пяти опросов показали, что Корбин явно выиграл дебаты. У единственного, давшего иной результат, объем выборки был в несколько раз меньше, чем у каждого из остальных. Тем не менее только его и цитировали на всех новостных каналах. Говорит ли это о предвзятом отношении СМИ к Корбину?
Скорее, это пример смещенных выборок. Те четыре опроса проводились в твиттере. Обычно это – просто безобидное развлечение (полуфинал мировой лиги чипсов: Monster Munch Pickled Onion против Walkers Cheese & Onion и т. д.). Но иногда вопросы бывают политическими.10
Беда в том, что твиттер не представляет всего населения. Соцсетью пользуется 17 % британцев, и среди них, согласно опросу 2017 года, больше молодежи, женщин и представителей среднего класса, чем в целом по стране. А молодежь, женщины и средний класс чаще голосуют за лейбористов. (Ну и, конечно, те, кто увидел эти опросы и поучаствовал в них, не представляют твиттер в целом.)
Большее число опрошенных делу не помогло бы. Проблема сохранилась бы, ведь выборка оставалась бы нерепрезентативной. Даже миллион человек – это все равно опрос пользователей твиттера, а не населения страны. Вы бы получили только более точное значение неверного ответа.
Репрезентативную выборку вообще получить очень трудно. Опрашивая людей в твиттере, вы не узнаете мнения тех, кто им не пользуется. То же самое верно и во всех других случаях. Если проводить опрос в интернете, вы упустите из виду тех, у кого его нет; если на улице, то не охватите тех, кто сидит дома. Раньше при проведении политических опросов было принято обзванивать респондентов, потому что стационарные телефоны стояли почти у каждого и так можно было без труда получить случайную выборку – просто выбирая номера случайным образом. Но в наше время этот способ даст сильно смещенную выборку, потому что те, у кого есть домашние телефоны (и кто отвечает на звонки с неизвестных номеров), отличаются от тех, у кого их нет.11
Есть способы, которые отчасти помогают обходить подобные трудности при выборе респондентов. Но идеала достичь невозможно: никого нельзя заставить участвовать в опросе, поэтому вам никогда не удастся полноценно представить тех, кто их ненавидит. Так что приходится идти обходным путем – снабжать результаты весами.
Представьте, что, согласно переписи, и мужчины, и женщины составляют по 50 % населения. Вы проводите опрос, стараясь получить максимально репрезентативную выборку. Из вашей тысячи респондентов 400 – женщины и 600 – мужчины. Вы задаете вопрос: «Нравится ли вам сериал „Анатомия страсти“?» Оказывается, что 400 человек его любят, а 600 – нет. Можно было бы решить, что «Анатомии страсти» симпатизирует 40 % населения. Но, уточнив данные, вы обнаруживаете гендерный перекос: сериал нравится 100 % женщин и 0 % мужчин.
Вы получили 40 % потому, что ваша выборка не репрезентативна для населения страны в целом. К счастью, это легко исправить. Достаточно присвоить результатам веса. Вы знаете, что в вашей выборке женщин всего 40 %, хотя должно быть 50 %. И поскольку 50 на 25 % больше 40, увеличиваете 400 ответов «да» на 25 % и получаете 500.
С мужчинами делаете то же самое. В вашей выборке их 60 %, а в несмещенной должно быть 50 %. 50 составляет 0,833… от 60, следовательно, здесь вес составит 0,833…
Поэтому полученный вами результат 600 вы умножаете на 0,833… и получаете 500. Теперь взвешенные результаты показывают, что 50 % населения нравится сериал «Анатомия страсти».
Можно действовать более тонко. Например, если оказалось, что 50 % ваших респондентов на последних выборах голосовали за консерваторов, а вы знаете, что страна в целом отдала за них 40 % голосов, а за лейбористов – 35 %, то можете снабдить свою выборку соответствующими весами. Или, если в выборке преобладают люди старшего возраста, потому что вы со своими расспросами звонили на домашние телефоны, но вы знаете распределение населения по возрастам, то у вас тоже получится скорректировать это с помощью весов.
Конечно, это можно использовать, только когда вам известны точные статистические сведения. Если же вы думаете, что женщин и мужчин поровну, а на самом деле их 60 % и 40 %, то введение весов только ухудшит результаты. Но реальные цифры часто известны из результатов переписи или голосования.
Есть и другие способы смещения выборки. Первой приходит на ум формулировка вопроса. Например, если вы спрашиваете, дать ли лекарство 600 пациентам, ответ будет разным в зависимости от того, скажете ли вы, что «200 человек будет спасено» или что «400 человек умрут», хотя с точки зрения логики эти формулировки равноправны. Этот эффект обрамления (фрейминга) проявляет себя при опросах. На односложные вопросы (типа: должно ли государство оплачивать лечение?) чаще отвечают «да».
Ну и как? Правда ли, что британцы больше всего любят перекусывать тостами с сыром? Не исключено, что raisin.co.uk серьезно озаботилась репрезентативностью выборки и даже ввела веса для учета возрастных, гендерных и электоральных особенностей населения, но так ли это, мы просто не знаем. (Мы спрашивали! И если нам ответят, мы учтем это при переиздании, честное слово.)
Но тратить столько сил на чисто развлекательный опрос было бы довольно странно – мы бы удивились, если б они это сделали. Скорее всего, они просто разместили в сети анкету и получили ответы преимущественно от тех, кто участвует в интернет-опросах.
Вопрос в том, совпадают ли вкусы отвечавших и населения в целом. Могут и совпадать. Но этого мы не знаем. Знаем только, что из двух тысяч опрошенных ими людей 22 % выбрали тосты с сыром. Ну да, факт интересный сам по себе – из него следуют некоторые выводы в отношении этих двух тысяч. Но скорее всего, это мало что говорит обо всех британцах.
Глава 5
Статистическая значимость
Верно ли, что мужчины больше едят в присутствии женщин, чтобы произвести на них впечатление? Так утверждалось в новости, вышедшей в 2015 году в The Daily Telegraph. Об этом же исследовании писали и в Reuters, и в The Economic Times в Индии.
В тех публикациях говорилось, что в присутствии женщин мужчины едят на 93 % больше пиццы и на 86 % больше салата, чем в присутствии других мужчин. Они опирались на исследования Брайана Вансинка, психолога из лаборатории пищевых продуктов и торговых марок Корнеллского университета, и двух его соавторов.
Вы уже могли догадаться, в историях, о которых мы рассказываем в этой книге, не все числа надежны. Однако в данном случае это не вина журналистов. Здесь само исследование оказалось совершенно неправильным, и этот случай очень показателен: на его примере видно, как работает и не работает наука. Чтобы разобраться, почему приведенной статистике нельзя доверять, нам придется углубиться в механизмы научной деятельности. Если вы в них разберетесь, то многое из того, о чем мы расскажем в последующих главах, будет гораздо прощепо- нять.
Почти в любой публикации о науке и числах встречается термин «статистическая значимость». Вам простительно думать, что речь идет о важности чисел, о которых вы читаете. К сожалению, все намного сложнее. Вот что это значит, согласно публикации 2019 года:
В предположении, что верна нулевая гипотеза и что исследование повторяется бесконечное число раз с помощью случайных выборок из той же самой совокупности людей, менее 5 % этих результатов будут более экстремальны, чем текущий результат.
Стало понятнее? Давайте разбираться.
Предположим, мы хотим что-то выяснить. Например, помогает ли чтение книг с названием «Цифры врут» лучше понимать статистику, которая приводится в новостях. Возьмем солидную выборку из тысячи человек: в нее войдут некоторые из тех миллионов людей, кто прочитал эту книгу, а также несколько людей, которые – увы! – этого не сделали. (Для простоты будем считать, что до того, как кто-то ознакомился с нашим трудом, группы были совершенно одинаковыми; хотя понятно, что на самом деле покупатели этой книги в среднем намного талантливее, умнее и красивее, чем остальное население.)
Потом проведем среди этих людей несложный тест, чтобы проверить их знания статистики и узнать, лучше ли результаты у тех, кто прочитал книгу.
Предположим, что да, лучше. А как узнать, не простая ли это случайность? Наши читатели действительно лучше справляются с тестом или это случайная вариация? Для ответа на этот вопрос мы воспользуемся специальной методикой – проверкой достоверности (или проверкой гипотезы).
Так, предположим, что «Цифры врут» никак не влияют на читателей, и представим результаты. Это называется нулевой гипотезой. При другом варианте – альтернативной гипотезе – книга произвела некий положительный эффект.
Это хорошо иллюстрируется графиком. Если верна нулевая гипотеза, то пик кривой будет возле среднего значения – большинство людей окажется в середине, оттеснив на края тех немногих, кто выполнит тест очень хорошо или очень плохо. Сама кривая будет похожа на кривую нормального распределения из главы 3. При этом среднее значение и график кривой окажутся похожими у обеих групп (тех, кто прочитал книгу, и тех, кто этого не сделал).
Если же верна альтернативная гипотеза, то средний балл читателей будет выше среднего балла другой группы и кривая распределения для этой группы сместится вправо.
Но даже если верна нулевая гипотеза и книга не оказывает никакого эффекта; если – внезапно – окажется, что обе группы одинаково хорошо разбираются в статистике, все равно останется одна проблема – вам не избежать случайных вариаций. У кого-то будет просто неудачный день. Вспомните фильм «Осторожно! Двери закрываются» – Гвинет Пэлтроу в одной вселенной пропускает свой поезд, опаздывает на наш тест, расстраивается и сдает его плохо; а в другой – приходит вовремя, блестяще отвечает на вопросы и влюбляется в Джона Ханну. Пунктуальность и душевное равновесие, вероятно, не сделают из девушки эксперта по статистике, однако благоприятно отразятся на результатах теста. Есть некоторая (пусть и небольшая) доля случайности в том, насколько хорошо каждый участник выполнит задания.12
Если несколько не читавших книгу выполнят тест очень плохо, а несколько прочитавших – очень хорошо, это может заметно изменить среднее значение – покажется, что читатели в общем проходят тест намного лучше.
Итак, представим, что по какой-то причине ваши результаты говорят, что читатели лучше справляются с тестом. Теперь важно узнать, насколько вероятно получить такие (или еще более экстремальные) результаты, если верна ваша нулевая гипотеза – чтение книги не влияет, а все вариации случайны. Это и называется проверкой достоверности.
Нет конкретного значения, при котором абсолютно ясно, что нулевая гипотеза неверна: теоретически даже самые сильные различия могут оказаться случайными. Но чем больше разница, тем меньше шансов, что это случайно. Ученые измеряют шансы случайного совпадения с помощью вероятности, или p-значения.
Чем менее правдоподобна случайность какого-нибудь события, тем меньше p. Если есть только один шанс из ста, что получится не менее экстремальный результат, если чтение книги не оказывает никакого эффекта, то p = 0,01. (Однако это не значит – и это ИСКЛЮЧИТЕЛЬНО ВАЖНО, настолько, что мы дважды напишем «ИСКЛЮЧИТЕЛЬНО ВАЖНО» прописными буквами, что вероятность того, что данный результат неверен, составляет одну сотую. Мы позже вернемся к этому, а пока просто отметим как факт.)
Во многих науках принято считать, что если p меньше или равно 0,05 – иными словами вы ожидаете увидеть столь экстремальные результаты не более чем в 5 % случаев, – то открытие статистически значимо, а нулевую гипотезу можно отвергнуть.
Предположим, что при тестировании средний балл у людей, прочитавших книгу, действительно оказался выше. Если p-значение такого результата меньше 0,05, будем считать, что мы достигли статистической значимости, отвергнем нулевую гипотезу (что книга не приносит пользы) и примем альтернативную (книга помогает лучше понимать статистику). Величина p-значения здесь показывает нам, что будь нулевая гипотеза верна и проведи мы тестирование сто раз, наши читатели показали бы не меньшее преимущество перед второй группой менее чем в пяти случаях.
* * *
Статистическая значимость сбивает с толку даже ученых. Исследование 2002 года показывает, что 100 % студентов-психологов и, хуже того, 90 % их преподавателей неправильно трактуют этот термин. В другом исследовании выяснилось, что в 25 из 28 рассмотренных учебников по психологии есть хотя бы одна ошибка в данном определении.
Давайте же разберемся с некоторыми возможными заблуждениями. Во-первых, важно помнить, что статистическая значимость – понятие условное. Нет ничего магического в числе 0,05. Вы можете взять за основу другое: меньшее, тем самым объявляя недостоверными большее число результатов (отнеся их к категории случайных), или большее, расширяя границы статистически значимых данных. Чем выше планка, тем выше риск ложноположительных результатов, чем ниже – тем выше риск ложноотрицательных. Ужесточив критерий, мы можем подумать, что чтение книги никак не сказывается, хотя на самом деле это не так. Ну и, конечно, наоборот.
Во-вторых, статистически значимый результат не обязательно значим в обыденном смысле. Например, если в группе тех, кто книгу не читал, средний балл – 65, а в другой – 68, то результат вполне может считаться статистически значимым, но для вас он вряд ли важен. Статистическая значимость какого-то результата характеризует вероятность его случайного получения, а не его важность.
И в-третьих: p = 0,05 для вашего результата не гарантирует, что вероятность ложности вашей гипотезы составляет всего одну двадцатую. Это самое распространенное заблуждение, и оно лежит в основе многих научных ошибок.
Проблема же в том, что хотя выбор в качестве границы статистической значимости числа 0,05 совершенно условен, ученые и – что еще важнее – редакции научных журналов принимают ее за точку отсечения. Если для ваших результатов p = 0,049, у вас есть шансы их опубликовать, а если p = 0,051, то такие шансы ничтожны. А ученым нужны публикации их исследований, чтобы получить грант, найти постоянную должность и вообще рассчитывать на карьерный рост. Поэтому они крайне заинтересованы в получении статистически значимых результатов.
Вернемся же к нашему эксперименту. Мы хотим показать, что эта книга помогает лучше разбираться в статистике и достойна попасть в список бестселлеров Sunday Times; и после этого, надеемся, будем получать приглашения на престижные коктейльные вечеринки. Но мы получаем лишь p = 0,08.
Наверное, просто не повезло, думаем мы. И повторяем эксперимент – достигаем 0,11. И еще, и еще, и еще раз, пока наконец не выходит 0,04. Потрясающе! Мы докладываем о результатах и дальше припеваючи живем на роялти с продажи книги. Только это почти наверняка ложноположительный результат. Если провести эксперимент 20 раз, вполне можно ожидать один случайный результат.
Есть и другие способы достичь желаемого. Мы можем по-разному тасовать данные. Например, не только считать баллы, но и измерять, насколько быстро люди проходят тест, или оценивать красоту почерка. Пусть читатели книги не получают более высокие баллы, но вдруг они быстрее справляются с тестом? Или у них улучшился почерк? А можно отбросить самые крайние результаты, назвав их выбросами. Если ввести достаточно параметров и по-разному сочетать их или внести в данные необходимые и кажущиеся разумными поправки, то по чистой случайности рано или поздно наверняка найдется что-то подходящее.
Теперь вернемся к мужчинам, пытающимся покорить женщин хорошим аппетитом. В конце 2016 года Вансинк, ведущий автор того исследования, опубликовал в своем блоге пост – «Аспирантка, которая никогда не говорила „нет“». Это положило конец его карьере.
Вансинк написал о новой турецкой аспирантке, пришедшей в его лабораторию. Он дал ей данные провалившегося эксперимента, который проводился без внешнего финансирования и имел нулевые результаты. (Это был месячный эксперимент, в ходе которого одним людям продавали входные билеты в итальянский ресторан со шведским столом по цене в два раза выше, чем другим.) Вансинк предложил ей проанализировать данные, потому что, по его мнению, из них можно было что-нибудь извлечь.
По его рекомендации аспирантка сделала это десятками различных способов и – вас это не должно удивить – нашла кучу корреляций. В нашем воображаемом эксперименте с чтением книги мы бы точно так же могли перебирать данные на разные лады, пока бы не обнаружили что-нибудь со значением p < 0,05. На основании полученного набора данных аспирантка с Вансинком опубликовали пять статей, включая ту самую. В ней утверждалось, что в присутствии женщин мужчины едят больше пиццы (p < 0,02) и салата (p < 0,04).
Ücretsiz ön izlemeyi tamamladınız.