Kitabı oku: «The Canterbury Puzzles, and Other Curious Problems», sayfa 5
47.—The Riddle of St. Edmondsbury
"It used to be told at St. Edmondsbury," said Father Peter on one occasion, "that many years ago they were so overrun with mice that the good abbot gave orders that all the cats from the country round should be obtained to exterminate the vermin. A record was kept, and at the end of the year it was found that every cat had killed an equal number of mice, and the total was exactly 1,111,111 mice. How many cats do you suppose there were?"
"Methinks one cat killed the lot," said Brother Benjamin.
"Out upon thee, brother! I said 'cats.'"
"Well, then," persisted Benjamin, "perchance 1,111,111 cats each killed one mouse."
"No," replied Father Peter, after the monks' jovial laughter had ended, "I said 'mice;' and all I need add is this—that each cat killed more mice than there were cats. They told me it was merely a question of the division of numbers, but I know not the answer to the riddle."
The correct answer is recorded, but it is not shown how they arrived at it.

48.—The Riddle of the Frogs' Ring
One Christmas the Abbot offered a prize of a large black jack mounted in silver, to be engraved with the name of the monk who should put forth the best new riddle. This tournament of wit was won by Brother Benedict, who, curiously enough, never before or after gave out anything that did not excite the ridicule of his brethren. It was called the "Frogs' Ring."
A ring was made with chalk on the floor of the hall, and divided into thirteen compartments, in which twelve discs of wood (called "frogs") were placed in the order shown in our illustration, one place being left vacant. The numbers 1 to 6 were painted white and the numbers 7 to 12 black. The puzzle was to get all the white numbers where the black ones were, and vice versa. The white frogs move round in one direction, and the black ones the opposite way. They may move in any order one step at a time, or jumping over one of the opposite colour to the place beyond, just as we play draughts to-day. The only other condition is that when all the frogs have changed sides, the 1 must be where the 12 now is and the 12 in the place now occupied by 1. The puzzle was to perform the feat in as few moves as possible. How many moves are necessary?
I will conclude in the words of the old writer: "These be some of the riddles which the monks of Riddlewell did set forth and expound each to the others in the merry days of the good Abbot David."
THE STRANGE ESCAPE OF THE KING'S JESTER
A PUZZLING ADVENTURE
At one time I was greatly in favour with the king, and his Majesty never seemed to weary of the companionship of the court fool. I had a gift for making riddles and quaint puzzles which ofttimes caused great sport; for albeit the king never found the right answer of one of these things in all his life, yet would he make merry at the bewilderment of those about him.
But let every cobbler stick unto his last; for when I did set out to learn the art of performing strange tricks in the magic, wherein the hand doth ever deceive the eye, the king was affrighted, and did accuse me of being a wizard, even commanding that I should be put to death. Luckily my wit did save my life. I begged that I might be slain by the royal hand and not by that of the executioner.
"By the saints," said his Majesty, "what difference can it make unto thee? But since it is thy wish, thou shalt have thy choice whether I kill thee or the executioner."
"Your Majesty," I answered, "I accept the choice that thou hast so graciously offered to me: I prefer that your Majesty should kill the executioner."
Yet is the life of a royal jester beset with great dangers, and the king having once gotten it into his royal head that I was a wizard, it was not long before I again fell into trouble, from which my wit did not a second time in a like way save me. I was cast into the dungeon to await my death. How, by the help of my gift in answering riddles and puzzles, I did escape from captivity I will now set forth; and in case it doth perplex any to know how some of the strange feats were performed, I will hereafter make the manner thereof plain to all.
49.—The Mysterious Rope

My dungeon did not lie beneath the moat, but was in one of the most high parts of the castle. So stout was the door, and so well locked and secured withal, that escape that way was not to be found. By hard work I did, after many days, remove one of the bars from the narrow window, and was able to crush my body through the opening; but the distance to the courtyard below was so exceeding great that it was certain death to drop thereto. Yet by great good fortune did I find in the corner of the cell a rope that had been there left and lay hid in the great darkness. But this rope had not length enough, and to drop in safety from the end was nowise possible. Then did I remember how the wise man from Ireland did lengthen the blanket that was too short for him by cutting a yard off the bottom of the same and joining it on to the top. So I made haste to divide the rope in half and to tie the two parts thereof together again. It was then full long, and did reach the ground, and I went down in safety. How could this have been?
50.—The Underground Maze
The only way out of the yard that I now was in was to descend a few stairs that led up into the centre (A) of an underground maze, through the winding of which I must pass before I could take my leave by the door (B). But I knew full well that in the great darkness of this dreadful place I might well wander for hours and yet return to the place from which I set out. How was I then to reach the door with certainty? With a plan of the maze it is but a simple matter to trace out the route, but how was the way to be found in the place itself in utter darkness?

51.—The Secret Lock
When I did at last reach the door it was fast closed, and on sliding a panel set before a grating the light that came in thereby showed unto me that my passage was barred by the king's secret lock. Before the handle of the door might be turned, it was needful to place the hands of three several dials in their proper places. If you but knew the proper letter for each dial, the secret was of a truth to your hand; but as ten letters were upon the face of every dial, you might try nine hundred and ninety-nine times and only succeed on the thousandth attempt withal. If I was indeed to escape I must waste not a moment.
Now, once had I heard the learned monk who did invent the lock say that he feared that the king's servants, having such bad memories, would mayhap forget the right letters; so perchance, thought I, he had on this account devised some way to aid their memories. And what more natural than to make the letters form some word? I soon found a word that was English, made of three letters—one letter being on each of the three dials. After that I had pointed the hands properly to the letters the door opened and I passed out. What was the secret word?

52.—Crossing the Moat
I was now face to face with the castle moat, which was, indeed, very wide and very deep. Alas! I could not swim, and my chance of escape seemed of a truth hopeless, as, doubtless, it would have been had I not espied a boat tied to the wall by a rope. But after I had got into it I did find that the oars had been taken away, and that there was nothing that I could use to row me across. When I had untied the rope and pushed off upon the water the boat lay quite still, there being no stream or current to help me. How, then, did I yet take the boat across the moat?

53.—The Royal Gardens
It was now daylight, and still had I to pass through the royal gardens outside of the castle walls. These gardens had once been laid out by an old king's gardener, who had become bereft of his senses, but was allowed to amuse himself therein. They were square, and divided into 16 parts by high walls, as shown in the plan thereof, so that there were openings from one garden to another, but only two different ways of entrance. Now, it was needful that I enter at the gate A and leave by the other gate B; but as there were gardeners going and coming about their work, I had to slip with agility from one garden to another, so that I might not be seen, but escape unobserved. I did succeed in so doing, but afterwards remembered that I had of a truth entered every one of the 16 gardens once, and never more than once. This was, indeed, a curious thing. How might it have been done?

54.—Bridging the Ditch
I now did truly think that at last was I a free man, but I had quite forgot that I must yet cross a deep ditch before I might get right away. This ditch was 10 feet wide, and I durst not attempt to jump it, as I had sprained an ankle in leaving the garden. Looking around for something to help me over my difficulty, I soon found eight narrow planks of wood lying together in a heap. With these alone, and the planks were each no more than 9 feet long, I did at last manage to make a bridge across the ditch. How was this done?

Being now free I did hasten to the house of a friend who provided me with a horse and a disguise, with which I soon succeeded in placing myself out of all fear of capture.
Through the goodly offices of divers persons at the king's court I did at length obtain the royal pardon, though, indeed, I was never restored to that full favour that was once my joy and pride.
Ofttimes have I been asked by many that do know me to set forth to them the strange manner of my escape, which more than one hath deemed to be of a truth wonderful, albeit the feat was nothing astonishing withal if we do but remember that from my youth upwards I had trained my wit to the making and answering of cunning enigmas. And I do hold that the study of such crafty matters is good, not alone for the pleasure that is created thereby, but because a man may never be sure that in some sudden and untoward difficulty that may beset him in passing through this life of ours such strange learning may not serve his ends greatly, and, mayhap, help him out of many difficulties.
I am now an aged man, and have not quite lost all my taste for quaint puzzles and conceits; but, of a truth, never have I found greater pleasure in making out the answers to any of these things than I had in mastering them that did enable me, as the king's jester in disgrace, to gain my freedom from the castle dungeon and so save my life.
THE SQUIRE'S CHRISTMAS PUZZLE PARTY
A fine specimen of the old English country gentleman was Squire Davidge, of Stoke Courcy Hall, in Somerset. When the last century was yet in its youth, there were few men in the west country more widely known and more generally respected and beloved than he. A born sportsman, his fame extended to Exmoor itself, where his daring and splendid riding in pursuit of the red deer had excited the admiration and envy of innumerable younger huntsmen. But it was in his own parish, and particularly in his own home, that his genial hospitality, generosity, and rare jovial humour made him the idol of his friends—and even of his relations, which sometimes means a good deal.
At Christmas it was always an open house at Stoke Courcy Hall, for if there was one thing more than another upon which Squire Davidge had very pronounced views, it was on the question of keeping up in a royal fashion the great festival of Yule-tide. "Hark ye, my lads," he would say to his sons: "our country will begin to fall on evil days if ever we grow indifferent to the claims of those Christmas festivities that have helped to win us the proud name of Merrie England." Therefore, when I say that Christmas at Stoke Courcy was kept up in the good old happy, rollicking, festive style that our grandfathers and great-grandfathers so dearly loved, it will be unnecessary for me to attempt a description. We have a faithful picture of these merry scenes in the Bracebridge Hall of Washington Irving. I must confine myself in this sketch to one special feature in the Squire's round of jollification during the season of peace and good will.
He took a curious and intelligent interest in puzzles of every kind, and there was always one night devoted to what was known as "Squire Davidge's Puzzle Party." Every guest was expected to come armed with some riddle or puzzle for the bewilderment and possible delectation of the company. The old gentleman always presented a new watch to the guest who was most successful in his answers. It is a pity that all the puzzles were not preserved; but I propose to present to my readers a few selected from a number that have passed down to a surviving member of the family, who has kindly allowed me to use them on this occasion. There are some very easy ones, a few that are moderately difficult, and one hard brain-racker, so all should be able to find something to their taste.
The little record is written in the neat angular hand of a young lady of that day, and the puzzles, the conditions of which I think it best to give mainly in my own words for the sake of greater clearness, appear to have been all propounded on one occasion.
55.—The Three Teacups

One young lady—of whom our fair historian records with delightful inconsequence: "This Miss Charity Lockyer has since been married to a curate from Taunton Vale"—placed three empty teacups on a table, and challenged anybody to put ten lumps of sugar in them so that there would be an odd number of lumps in every cup. "One young man, who has been to Oxford University, and is studying the law, declared with some heat that, beyond a doubt, there was no possible way of doing it, and he offered to give proof of the fact to the company." It must have been interesting to see his face when he was shown Miss Charity's correct answer.
56.—The Eleven Pennies

A guest asked some one to favour him with eleven pennies, and he passed the coins to the company, as depicted in our illustration. The writer says: "He then requested us to remove five coins from the eleven, add four coins and leave nine. We could not but think there must needs be ten pennies left. We were a good deal amused at the answer hereof."
57.—The Christmas Geese
Squire Hembrow, from Weston Zoyland—wherever that may be—proposed the following little arithmetical puzzle, from which it is probable that several somewhat similar modern ones have been derived: Farmer Rouse sent his man to market with a flock of geese, telling him that he might sell all or any of them, as he considered best, for he was sure the man knew how to make a good bargain. This is the report that Jabez made, though I have taken it out of the old Somerset dialect, which might puzzle some readers in a way not desired. "Well, first of all I sold Mr. Jasper Tyler half of the flock and half a goose over; then I sold Farmer Avent a third of what remained and a third of a goose over; then I sold Widow Foster a quarter of what remained and three-quarters of a goose over; and as I was coming home, whom should I meet but Ned Collier: so we had a mug of cider together at the Barley Mow, where I sold him exactly a fifth of what I had left, and gave him a fifth of a goose over for the missus. These nineteen that I have brought back I couldn't get rid of at any price." Now, how many geese did Farmer Rouse send to market? My humane readers may be relieved to know that no goose was divided or put to any inconvenience whatever by the sales.
58.—The Chalked Numbers

"We laughed greatly at a pretty jest on the part of Major Trenchard, a merry friend of the Squire's. With a piece of chalk he marked a different number on the backs of eight lads who were at the party." Then, it seems, he divided them in two groups, as shown in the illustration, 1, 2, 3, 4 being on one side, and 5, 7, 8, 9 on the other. It will be seen that the numbers of the left-hand group add up to 10, while the numbers in the other group add up to 29. The Major's puzzle was to rearrange the eight boys in two new groups, so that the four numbers in each group should add up alike. The Squire's niece asked if the 5 should not be a 6; but the Major explained that the numbers were quite correct if properly regarded.
59.—Tasting the Plum Puddings

"Everybody, as I suppose, knows well that the number of different Christmas plum puddings that you taste will bring you the same number of lucky days in the new year. One of the guests (and his name has escaped my memory) brought with him a sheet of paper on which were drawn sixty-four puddings, and he said the puzzle was an allegory of a sort, and he intended to show how we might manage our pudding-tasting with as much dispatch as possible." I fail to fully understand this fanciful and rather overstrained view of the puzzle. But it would appear that the puddings were arranged regularly, as I have shown them in the illustration, and that to strike out a pudding was to indicate that it had been duly tasted. You have simply to put the point of your pencil on the pudding in the top corner, bearing a sprig of holly, and strike out all the sixty-four puddings through their centres in twenty-one straight strokes. You can go up or down or horizontally, but not diagonally or obliquely; and you must never strike out a pudding twice, as that would imply a second and unnecessary tasting of those indigestible dainties. But the peculiar part of the thing is that you are required to taste the pudding that is seen steaming hot at the end of your tenth stroke, and to taste the one decked with holly in the bottom row the very last of all.
60.—Under the Mistletoe Bough
"At the party was a widower who has but lately come into these parts," says the record; "and, to be sure, he was an exceedingly melancholy man, for he did sit away from the company during the most part of the evening. We afterwards heard that he had been keeping a secret account of all the kisses that were given and received under the mistletoe bough. Truly, I would not have suffered any one to kiss me in that manner had I known that so unfair a watch was being kept. Other maids beside were in a like way shocked, as Betty Marchant has since told me." But it seems that the melancholy widower was merely collecting material for the following little osculatory problem.
The company consisted of the Squire and his wife and six other married couples, one widower and three widows, twelve bachelors and boys, and ten maidens and little girls. Now, everybody was found to have kissed everybody else, with the following exceptions and additions: No male, of course, kissed a male. No married man kissed a married woman, except his own wife. All the bachelors and boys kissed all the maidens and girls twice. The widower did not kiss anybody, and the widows did not kiss each other. The puzzle was to ascertain just how many kisses had been thus given under the mistletoe bough, assuming, as it is charitable to do, that every kiss was returned—the double act being counted as one kiss.

61.—The Silver Cubes
The last extract that I will give is one that will, I think, interest those readers who may find some of the above puzzles too easy. It is a hard nut, and should only be attempted by those who flatter themselves that they possess strong intellectual teeth.
"Master Herbert Spearing, the son of a widow lady in our parish, proposed a puzzle in arithmetic that looks simple, but nobody present was able to solve it. Of a truth I did not venture to attempt it myself, after the young lawyer from Oxford, who they say is very learned in the mathematics and a great scholar, failed to show us the answer. He did assure us that he believed it could not be done, but I have since been told that it is possible, though, of a certainty, I may not vouch for it. Master Herbert brought with him two cubes of solid silver that belonged to his mother. He showed that, as they measured two inches every way, each contained eight cubic inches of silver, and therefore the two contained together sixteen cubic inches. That which he wanted to know was—'Could anybody give him exact dimensions for two cubes that should together contain just seventeen cubic inches of silver?'" Of course the cubes may be of different sizes.

The idea of a Christmas Puzzle Party, as devised by the old Squire, seems to have been excellent, and it might well be revived at the present day by people who are fond of puzzles and who have grown tired of Book Teas and similar recent introductions for the amusement of evening parties. Prizes could be awarded to the best solvers of the puzzles propounded by the guests.