Kitabı oku: «Der Fragebogen»
Eine Arbeitsgemeinschaft der Verlage
Böhlau Verlag • Wien • Köln • Weimar
Verlag Barbara Budrich • Opladen • Toronto
facultas • Wien
Wilhelm Fink • Paderborn
Narr Francke Attempto Verlag / expert verlag • Tübingen
Haupt Verlag • Bern
Verlag Julius Klinkhardt • Bad Heilbrunn
Mohr Siebeck • Tübingen
Ernst Reinhardt Verlag • München
Ferdinand Schöningh • Paderborn
transcript Verlag • Bielefeld
Eugen Ulmer Verlag • Stuttgart
UVK Verlag • München
Vandenhoeck & Ruprecht • Göttingen
Waxmann • Münster • New York
wbv Publikation • Bielefeld
Wochenschau Verlag • Frankfurt am Main
Elisabeth Steiner, Prof. (FH), DSA, Mag.a Dr.in, ist Dipl. Sozialarbeiterin und Klinische und Gesundheitspsychologin. Sie ist Studiengangsleiterin des Masterstudiengangs
„Sozialraumorientierte und Klinische Soziale Arbeit“ an der FH Campus Wien.
Ihre Forschungsschwerpunkte liegen in der Sozialarbeitswissenschaft.
Kontakt: elisabeth.steiner@fh-campuswien.ac.at
Mxichael Benesch, Dr., ist Wirtschaftspsychologe und Geschäftsführer der M. Benesch Unternehmensberatung. Er ist als Trainer und Berater in der Organisationsentwicklung und sozialwissenschaftlichen Forschung tätig sowie Lehrbeauftragter an mehreren
österreichischen Universitäten und Fachhochschulen. Sein Spezialgebiet ist die
Verbindung empirisch-quantitativer mit qualitativen Informationen unter Anwendung der Dialogischen Kommunikation nach David Bohm und Martin Buber. Nähere
Informationen unter www.benesch.co.at.
Über facultas bei UTB außerdem erschienen:
Michael Benesch: Der Dialog in Beratung und Coaching, 2020 (UTB)
Michael Benesch, Elisabeth Steiner: Klinische Studien lesen und verstehen,
2. Auflage, 2018 (UTB)
Die Lehrbeispiele in diesem Buch wurden mit der SPSS-Version 26 statistisch ausgewertet.
Den Übungsdatensatz zum Buch finden Sie unter https://www.utb-shop.de beim Zusatzmaterial zu diesem Buch zum kostenlosen Download.
Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.
Alle Angaben in diesem Fachbuch erfolgen trotz sorgfältiger Bearbeitung ohne Gewähr,
eine Haftung der Autorin, des Autors oder des Verlages ist ausgeschlossen.
6., aktualisierte und überarbeitete Auflage 2021
Copyright © 2021 Facultas Verlags- und Buchhandels AG
facultas Universitätsverlag, Stolberggasse 26, 1050 Wien, Österreich
Alle Rechte, insbesondere das Recht der Vervielfältigung und der Verbreitung
sowie der Übersetzung, sind vorbehalten.
Umschlagfoto: „Excellent Performance © istockphoto/bluestocking
Lektorat: Verena Hauser, Wien
Satz: Facultas Verlags- und Buchhandels AG
Einbandgestaltung: Atelier Reichert, Stuttgart
Druck und Bindung: Friedrich Pustet, Regensburg
Printed in Germany
utb-Nummer 8406
ISBN 978-3-8252-8788-7 (Print-Ausgabe)
ISBN 978-3-8385-8788-2 (Online-Leserecht)
ISBN 978-3-8463-8788-7 (E-PUB)
Vorwort
Vor mittlerweile zwölf Jahren, im Oktober 2008, erschien die erste Auflage unseres Buches, das die Erstellung von Fragebögen und die Herangehensweise an einfachere statistische Auswertungen mit SPSS für Anfänger*innen zum Inhalt hatte. Dabei wird der Forschungsprozess von der Idee bis zur statistischen Auswertung und Berichterstellung vermittelt, um eine Grundlage für die weitere Beschäftigung mit dem Thema zu schaffen.
Die Idee zu diesem Buch entstand im Zuge unserer langjährigen Lehrtätigkeit in den unterschiedlichsten Bereichen und der dabei gewonnenen Erfahrungen in der Vermittlung statistischer Grundkenntnisse an Einsteiger*innen. Dabei konnten wir immer wieder eine wesentliche Beobachtung machen, nämlich die, dass eine eher intuitive, auf „Alltagsverständnis“ aufbauende Herangehensweise, welche auf formalistische Zugänge weitestgehend verzichtet, von den Studierenden sehr geschätzt wird und das Interesse am Fach fördert.
Das didaktische Konzept des Buches hat sich auch in der vorliegenden 6. Auflage nicht geändert, wenngleich es zu einigen kleineren Anpassungen im Inhalt gekommen ist, etwa was das Statistikprogramm SPSS (in dieser Auflage auf Basis von SPSS 26) betrifft. Die Rückmeldungen von Studierenden ebenso wie Lehrenden aus österreichischen und deutschen Fachhochschulen und Universitäten, was das Konzept des Buches und die einfachen, eher alltagssprachlichen und intuitiv verständlichen Erklärungen statistischer Begriffe, den weitestgehenden Verzicht auf Formeln und Ableitungen sowie die gut verständlichen Beispiele betrifft, legen nahe, nichts Wesentliches zu verändern. Der Bedarf an einer 6. Auflage spricht für sich. Dies ist kein Lehrbuch für Profis, sondern soll Studierenden unterschiedlicher Studienrichtungen den Einstieg erleichtern sowie lehrenden Kolleg*innen, die in der Praxis der Vermittlung von quantitativen Forschungsmethoden stehen, Anregungen für ihren Unterricht bieten. Und last, but not least werden auch Personen aus verschiedenen Anwendungsfeldern, wie Psycholog*innen, Sozialarbeiter*innen, Mediziner*innen, Kollegen*innen aus unterschiedlichen Gesundheitsberufen, wie Logopädie, Physiotherapie, aus der Krankenpflege u. v. m., deren Ausbildungszeit schon einige Jahre zurückliegt, gerne auf dieses einfach verständliche Buch zurückgreifen, um einige Lücken aus Theorie und Praxis des wissenschaftlichen Arbeitens zu füllen – das zumindest legen die mittlerweile unzähligen Rückmeldungen nahe, die wir in den letzten zwölf Jahren erhalten haben.
Alle im Buch angeführten Beispiele können mithilfe von SPSS selbst nachgerechnet werden – das entsprechende Datenfile finden Sie auf https://www.utb-shop.de/ beim Zusatzmaterial zu diesem Buch. Die Daten sind fiktiv und beziehen sich auf den im Anhang abgebildeten Übungsfragebogen. Wir empfehlen auch die selbstständige Bearbeitung der jedem Kapitel angehängten Übungsbeispiele – zu Ihrer Kontrolle finden Sie Musterlösungen auf den Seiten 175 bis 186.
Es bleibt uns nun wieder die Hoffnung, dass das vorliegende Buch auch weiterhin Unterstützung bei der Erstellung wissenschaftlicher Arbeiten bzw. Abschlussarbeiten bietet und vielleicht ein wenig Lust auf die Generierung von Daten und deren statistische Auswertung macht. Zumindest wäre es schon ein wesentlicher Schritt in die richtige Richtung, wenn Ängste bzw. Vorbehalte, die quantitativen Zugängen oft entgegengebracht werden, reduziert bzw. ein wenig ins Positive verändert werden!
Wien, im Dezember 2020Elisabeth Steiner, Michael Benesch
Inhaltsverzeichnis
1 Elementare Definitionen
1.1 Deskriptive Statistik und Inferenzstatistik
1.1.1 Deskriptivstatistik (beschreibende Statistik)
1.1.2 Inferenzstatistik (beurteilende bzw. schließende Statistik)
1.2 Stichprobenarten
1.2.1 Einfache Zufallsstichprobe (Random Sample)
1.2.2 Geschichtete Zufallsstichprobe
1.2.3 Klumpenstichprobe (Cluster Sample)
1.2.4 Zufall versus willkürliche Auswahl
1.2.5 Abhängigkeit der Stichproben
1.3 Schluss von der Stichprobe auf die Grundgesamtheit
1.4 Zusammenfassung des Kapitels
1.5 Übungsbeispiele
2 Messung in den Sozialwissenschaften
2.1 Skalenbzw. Messniveaus
2.2 Nominalskala
2.3 Ordinalskala
2.4 Intervallskala
2.5 Verhältnisskala
2.6 Zusammenfassung des Kapitels
2.7 Übungsbeispiele
3 Die Untersuchungsplanung – von der Idee zur empirischen Forschung
3.1 Die Themensuche
3.1.1 Das Anlegen einer Ideensammlung
3.1.2 Die Replikation von Untersuchungen
3.1.3 Die Mitarbeit an Forschungsprojekten
3.1.4 Weitere kreative Anregungen
3.2 Konkretisierung und Formulierung einer Forschungsfrage
3.3 Die Literaturrecherche
3.4 Auswahl der Untersuchungsart – Forschungsdesign
3.5 Ethische Bewertung einer Forschungsfrage
3.6 Zusammenfassung des Kapitels
3.7 Übungsbeispiele
4 Datenerhebung: Die schriftliche Befragung (Fragebogen)
4.1 Methoden der quantitativen Datenerhebung
4.2 Allgemeine inhaltliche Vorbemerkungen zur Fragebogenkonstruktion
4.3 Erste inhaltliche Schritte
4.4 Prinzipien der Konstruktion
4.4.1 Fragenauswahl
4.4.2 Einleitung, Instruktion und Anrede
4.4.3 Richtlinien zur Formulierung der Items
4.4.4 Antwortformate
4.5 Pretest
4.6 Negative Antworttendenzen
4.6.1 Absichtliche Verstellung
4.6.2 Soziale Erwünschtheit (Social Desirability)
4.6.3 Akquieszenz oder „Ja-Sage-Bereitschaft“ 62
4.6.4 Bevorzugung von extremen, unbestimmten oder besonders platzierten Antwortkategorien
4.6.5 Wahl von Antwortmöglichkeiten, die eine bestimmte Länge, Wortfolge oder seriale Position aufweisen
4.6.6 Verfälschung aufgrund der Tendenz, zu raten, oder aufgrund einer raschen Bearbeitung des Tests
4.6.7 Tendenz zur ersten passenden Kategorie
4.6.8 Beeinflussung durch motivationale Bedingungen
4.6.9 „Mustermalen“
4.7 Zusammenfassung des Kapitels
4.8 Übungsbeispiele
5 Computerunterstützte Datenaufbereitung mittels SPSS
5.1 Was ist SPSS?
5.2 Vom Fragebogen zur SPSS-Datei
5.2.1 Wie rufe ich SPSS auf?
5.2.2 Wichtige Anmerkungen vor der Dateneingabe
5.2.3 Kodierung und Kodeplan
5.2.4 Erstellung eines Datenfiles
5.2.5 Datencheck/Data-Cleaning
5.2.6 Weitere Datenaufbereitung
5.3 Zusammenfassung des Kapitels
5.4 Übungsbeispiele
6 Deskriptivstatistische Datenanalyse
6.1 Tabellarische Darstellung der Daten
6.1.1 Häufigkeitstabellen
6.1.2 Kreuztabellen bzw. Kontingenztafeln
6.2 Grafische Darstellung der Daten
6.2.1 Balkendiagramme
6.2.2 Histogramme
6.2.3 Boxplots
6.2.4 Streudiagramme
6.3 Lagemaße – Lokalisationsparameter
6.3.1 Normalverteilung
6.3.2 Das arithmetische Mittel – der Mittelwert
6.3.3 Der Median
6.3.4 Der Modus (Modalwert)
6.4 Dispersionsmaße (Streuungsmaße)
6.4.1 Varianz
6.4.2 Standardabweichung
6.4.3 Der Quartilabstand
6.4.4 Spannweite
6.4.5 Perzentilwerte
6.5 Zusammenfassung des Kapitels
6.6 Übungsbeispiele
7 Schluss von der Stichprobe auf die Population
7.1 Alltags- und statistische Hypothesen
7.2 Statistischer Test
7.3 Fehler erster und zweiter Art und die Macht eines Tests
7.4 Der Standardfehler des Mittelwerts
7.5 Zusammenfassung des Kapitels
7.6 Übungsbeispiele
8 Statistische Tests
8.1 T-Test für unabhängige Stichproben
8.2 T-Test für abhängige Stichproben
8.3 U-Test nach Mann & Whitney
8.4 Wilcoxon-Test
8.5 Friedman-Test
8.6 Vierfelder-Chi-Quadrat-Test
8.7 Zusammenfassung des Kapitels
8.8 Übungsbeispiele
9 Korrelation und lineare Regression
9.1 Produkt-Moment-Korrelation
9.2 Rangkorrelation nach Spearman
9.3 Vierfelderkorrelation
9.4 Partielle Korrelation
9.5 Biseriale Korrelation
9.6 Korrelation und Kausalität
9.7 Einfache lineare Regression
9.8 Multiple lineare Regression
9.9 Zusammenfassung des Kapitels
9.10 Übungsbeispiele
10 Varianzanalyse
10.1 Grundlagen der Varianzanalyse
10.2 Einfaktorielle Varianzanalyse ohne Messwiederholung
10.3 Einfaktorielle Varianzanalyse mit Messwiederholung
10.4 Zusammenfassung des Kapitels
10.5 Übungsbeispiele
11 Der statistische Auswertungsbericht
11.1 Der Theorieteil
11.2 Der Methodenteil
11.3 Der Ergebnisteil
11.4 Diskussion und Ausblick
11.5 Einige Zitierregeln
11.6 Das Literaturverzeichnis
11.7 Zusammenfassung des Kapitels
11.8 Übungsbeispiele
Anhang
Lösungen zu den Übungsbeispielen
Beispiel: Fragebogen zur Studien- und Lebenssituation bei Studierenden
Literaturverzeichnis
Stichwortverzeichnis
1 Elementare Definitionen
1.1 Deskriptive Statistik und Inferenzstatistik
Grundsätzlich wird bei der Analyse quantitativer Beobachtungen bzw. Messungen und deren Beschreibung die Inferenzstatistik von der Deskriptivstatistik unterschieden. Diese beiden prinzipiellen Zugänge in der Statistik sollen im folgenden Kapitel in ihrer Unterschiedlichkeit und Anwendbarkeit genauer dargestellt werden. Diese Darstellungsform soll jedoch nicht den falschen Eindruck entstehen lassen, dass die beiden Zugänge konkurrierend auftreten. In der Praxis stellen sie einander ergänzende und inhaltlich bereichernde Zugänge dar.
1.1.1 Deskriptivstatistik (beschreibende Statistik)
„Ein wesentlicher Teil der Statistik ist die Datenbeschreibung einschließlich einer systematischen Suche nach aufschlussreichen Informationen über die Struktur eines Datenkörpers. Strukturen in den Daten und bedeutsame Abweichungen von diesen Strukturen sollen aufgedeckt werden.“ (Hedderich & Sachs, 2011, S. 11)
Es werden also bestimmte Charakteristika (Eigenschaften) einer Stichprobe beschrieben, allerdings noch ohne den Anspruch, etwas über die dahinterstehende Grundgesamtheit (Population) auszusagen. Dies wäre der Ansatz, den die Inferenzstatistik verfolgt. Bei dieser Beschreibung interessieren im Grunde die Ableitungen von gewissen, in den Daten auffindbaren Gesetzmäßigkeiten, die auch die Basis für weitere inferenzstatistische Verwertungen darstellen.
Es handelt sich um einen summarischen Zugang zu quantitativen Informationen. Wenn wir z. B. etwas über eine Stichprobe von Studierenden (n = 127) wissen möchten, müssen wir im ersten Schritt entscheiden, welche Eigenschaften dieser Stichprobe uns interessieren, und im nächsten Schritt, ob wir diese Eigenschaften zunächst grafisch veranschaulichen und/oder ob Maßzahlen wie Mittelwerte und Streuungen zur Beschreibung herangezogen werden (mehr dazu in Kapitel 6). Wir müssen also entscheiden, wie wir die wichtigsten „Eigenschaften“ der Stichprobe in geeigneter Form und gut überschaubar darstellen.
Nehmen wir an, uns interessiert die Geschlechterverteilung in der Stichprobe der 127 Studierenden. Für ihre Darstellung würde sich aufgrund der geringen Anzahl der Ausprägungen der Variable Geschlecht, nämlich männlich und weiblich, eine einfache Grafik wie das Kreisdiagramm (Abb. 1.1) anbieten:
Besteht diese Stichprobe von StudentInnen aus 70 männlichen und 57 weiblichen Personen, wird die Verteilung durch das Kreisdiagramm auf einfache und anschauliche Art und Weise grafisch dargestellt.
Abb. 1.1: Geschlechterverteilung/Angabe in absoluten Häufigkeiten
Eine weitere deskriptivstatistische Methode wäre die Darstellung einer einfachen Häufigkeitstabelle.
In Tabelle 1.1 sind zusätzlich zu diesen absoluten Häufigkeiten von 70 und 57 die Prozente angegeben. Man berechnet sie, indem man die absoluten Zahlen jeder Gruppe durch die Stichprobengröße dividiert und anschließend mit 100 multipliziert (57/127 = 44,9% und 70/127 = 55,1 %).
Tab. 1.1: Geschlechterverteilung/Häufigkeiten und Prozent
Häufigkeit | Prozetn | ||
Gültig | weiblich | 57 | 44,9% |
männlich | 70 | 55,1% | |
Gesamt | 127 | 100,0% |
Natürlich ist Statistik mit Informationsreduktion verbunden, das ist eine ihrer Grundideen und bedeutet in unserem Beispiel: Aus dem Kreisdiagramm (Abb. 1.1) oder der Tabelle (Tab. 1.1) ist nicht mehr ersichtlich, welches Individuum der Stichprobe männlich oder weiblich ist. Wir kennen nur noch die entsprechenden Anteile (45 % und 55 %) bzw. Häufigkeiten (57 und 70).
Eine weitere gängige Methode der Deskriptivstatistik, um Stichproben zu beschreiben, besteht darin, sogenannte deskriptivstatistische Maßzahlen zu berechnen. Die bekanntesten sind das arithmetische Mittel (meist nur „Mittelwert“ genannt) und die Standardabweichung (dazu eine ausführliche Beschreibung in Kapitel 6), die dazugehörige Streuung.
Den Mittelwert (x̄ = arithmetisches Mittel) erhält man, indem alle Messwerte (wie z. B. das Alter in Jahren) addiert werden und die resultierende Summe durch die Anzahl der Messwerte (n = Stichprobengröße) dividiert wird.
x̄ = 24 Jahre für die männliche Stichprobe
Zieht man einen der siebzig Studenten aus der Gruppe und erfragt sein Alter, so ist die Wahrscheinlichkeit hoch, dass es im Bereich um 24 Jahre liegt. Allerdings ist die Angabe des Mittelwertes praktisch sinnlos, wenn man nichts über die Verteilung der ursprünglichen Messwerte weiß. In einer Stichprobe von drei 20-jährigen Personen beträgt der Mittelwert zwanzig Jahre [(20 + 20 + 20) / 3 = 20]. Auch in einer Stichprobe mit einem 10-Jährigen, einem 11-Jährigen und einem 39-Jährigen macht der Mittelwert zwanzig Jahre aus [(10 + 11 + 39) / 3 = 20].
Dies führt uns zum nächsten Schritt – der Angabe der dazugehörigen Streuungsmaße (Dispersionsmaße), die Aufschluss über die „Differenzen“ in der Altersverteilung geben können, z. B. die Standardabweichung = s = 3 Jahre.
Das heißt, in Kombination mit der Angabe des Mittelwerts von 24 Jahren kann unter der Annahme der Normalverteilung (dazu ebenfalls mehr in Kapitel 6) davon ausgegangen werden, dass rund 68 % der Studenten im Altersbereich von 21 bis 27 Jahren liegen (d. h. im Bereich 24 Jahre +/– 3 Jahre).
Durch die so durchgeführte Beschreibung der Stichprobe gewinnt man bereits einen guten Überblick über deren Charakteristika, also wesentliche Informationen über ihre Beschaffenheit: Wir wissen bis jetzt, dass die Stichprobe aus 57 weiblichen und 70 männlichen Studierenden besteht. Dies könnte mit einer Häufigkeitstabelle unter der zusätzlichen Angabe von Prozenten noch ergänzt werden. Der Altersdurchschnitt der männlichen Studierenden liegt bei 24 Jahren. Und rund 68 % der männlichen Studierenden liegen im Altersbereich von 21 bis 27 Jahren.
Statistische Methoden zur Beschreibung der Daten von Stichproben in Form von Grafiken, Tabellen oder einzelnen Kennwerten (Lagemaße bzw. Streuungsmaße) bezeichnen wir zusammenfassend als deskriptive (beschreibende) Statistik.
Sie gibt einen Überblick über die Merkmalsausprägungen einzelner Variablen und stellt oft eine fundierte Basis für weitere statistische Berechnungen dar.
1.1.2 Inferenzstatistik (beurteilende bzw. schließende Statistik)
Auf Basis von Erfahrungen, Beobachtungen und Wissen ziehen wir Rückschlüsse – dieser Prozess wird als Inferenz bezeichnet. Dabei können zwei Zugänge verfolgt werden: Vom „Allgemeinen“ auf das „Besondere“ zu schließen wird als deduktiver Zugang bezeichnet. Im Gegensatz dazu spricht man vom induktiven Zugang, wenn man vom „Besonderen“ auf das „Allgemeine“ schließen möchte. Durch diese Differenzierung werden auch grob qualitative von quantitativen Forschungszugängen unterschieden.
Während die Deskriptivstatistik eine Stichprobe beschreibt, ermöglicht die Inferenzbzw. analytische oder beurteilende Statistik, über diese Stichprobe hinaus etwas über die dahinterstehende Grundgesamtheit (Population) auszusagen, also Verallgemeinerungen zu treffen.
Die Inferenzstatistik bzw. „Beurteilende (Schließende) Statistik untersucht […] nur einen Teil, der für die Grundgesamtheit, deren Eigenschaften uns interessieren, charakteristisch oder repräsentativ sein soll“ (Hedderich & Sachs, 2011, S. 9).
Die Grundidee liegt also darin, von einer kleinen Auswahl (Stichprobe) auf die dahinterliegende Grundgesamtheit zu schließen.
Es gibt neben den bereits erwähnten Begrifflichkeiten Inferenzstatistik, beschreibende bzw. analytische Statistik auch noch die Bezeichnung induktive (hinführende) Statistik. Alltagssprachlich wird eine solche Hinführung als logischer Schluss dargestellt. Die Verwendung dieser Begriffe verwirrt oft, bezeichnet aber den gleichen Zugang zur Statistik.
Wir stellen in der Stichprobe fest, dass sich die männlichen von den weiblichen Studierenden hinsichtlich des Lernaufwandes für eine bestimmte Prüfung unterscheiden, also eine Gruppe für dieselbe Prüfung länger lernt. Mittels der Methoden der Inferenzstatistik, mit denen wir uns später beschäftigen werden, kann nun festgestellt werden, ob es sich in der Grundgesamtheit (alle StudentInnen dieser Studienrichtung an dieser Universität) genauso wie in der Stichprobe verhält. Dieses Schließen von der Stichprobe auf das Dahinterstehende – die Grundgesamtheit – ist allerdings nicht mit absoluter Sicherheit möglich, sondern nur mit einer bestimmten Wahrscheinlichkeit. Die Verallgemeinerung auf die Population ist stets unsicher. Wir können mithilfe statistischer Auswertungen prinzipiell nur Wahrscheinlichkeitsaussagen treffen – und dies mit unterschiedlicher Genauigkeit.
In sozialwissenschaftlichen Untersuchungen möchte man also meist über die Beschreibung einer ausgewählten (spezifischen) Gruppe von Untersuchungseinheiten (Stichproben) hinausgehen und allgemein gültige Aussagen treffen. Dazu ist die rein deskriptive Statistik, die Beschreibung der Daten in Form von Häufigkeitstabellen, Grafiken und einzelnen Kennwerten, in den wenigsten Fällen ausreichend.
Die Inferenzbzw. beurteilende Statistik nimmt sich des Problems an, wie man Ergebnisse, die an einer verhältnismäßig kleinen Zahl von Personen (Stichprobe) gewonnen wurden, auf die Grundgesamtheit (Population) umlegen, also allgemein gültige Aussagen treffen kann. Die allgemein gültige Aussage (über die Grundgesamtheit) wird als Hypothese formuliert, die anhand von Stichproben zu überprüfen ist. Hierin liegt ein wesentlicher Unterscheidungspunkt der zwei Zugänge. Die Inferenzstatistik stellt Hypothesen auf und ermöglicht deren Überprüfung.
Aus der Grundgesamtheit wird eine von vielen möglichen Stichproben gezogen. Die folgende Abbildung 1.2 verdeutlicht dies. Aus einer größeren Grundgesamtheit (der große Kreis) gibt es nahezu unendlich viele Möglichkeiten, einzelne Stichproben (kleine Kreise) zu erhalten. Wichtig ist, dass diese gezogene Stichprobe „repräsentativ“ ist, also die wesentlichen Charakteristika der Grundgesamtheit widerspiegelt.
Abb. 1.2: Grundgesamtheit mit verschiedenen Stichprobenziehungen
Ein bekanntes Anwendungsgebiet ist die Hochrechnung vor Wahlen. Die Meinungsforschungsinstitute konkurrieren jeweils um die korrekteren Vorhersagen des Wahlausgangs. Sie gehen dabei so vor, dass sie eine kleine (aber repräsentative) Stichprobe von WählerInnen befragen, von der sie auf die Grundgesamtheit der Bevölkerung schließen können.
Repräsentativität bedeutet in diesem Beispiel, dass die „kleine“ ausgewählte Gruppe möglichst die reale Situation der „Grundgesamtheit“ beschreibt, also die Variablen (Eigenschaften), wie z. B. Geschlecht, Alter, Ausbildungsstand, soziale Schicht usw., real abgebildet sind.
Natürlich sind Ergebnisse, die aufgrund von Daten einer Stichprobe gewonnen werden, mit Ungenauigkeiten behaftet. Das ist auch der Grund, weshalb bei einer Wahlprognose stets ein Bereich angegeben wird, z. B. +/–2 %, in dem das „wahre“ Ergebnis (also der An teil der WählerInnen an der Grundgesamtheit) mit gewisser Wahrscheinlichkeit liegt.
Neben den Ergebnissen, die durch analytische Verfahren gewonnen werden, können deskriptivstatistische zusätzlich zu einer übersichtlichen und anschaulichen Informationsaufbereitung beitragen.
Das Zusammenspiel der beiden Methoden kann sich gut ergänzen und zu einem Höchstmaß an Information führen.
Die Inferenzstatistik wird häufig auch als analytische Statistik oder schließende Statistik bezeichnet. Der wesentliche Unterschied zur deskriptiven Statistik liegt darin, dass es zur Überprüfung von Hypothesen, die sich auf die dahinterstehende Grundgesamtheit beziehen, kommt. Auf diese Weise sollen allgemein gültige Aussagen über die Stichprobe hinaus getroffen werden. Es wird ein deduktiver Zugang verfolgt.
1.2 Stichprobenarten
In der Empirie (wissenschaftlich gewonnene Erfahrung) werden unterschiedliche Zugänge zur Auswahl einer repräsentativen Stichprobe verfolgt. Mittels eines Stichprobenplans wird das Zufallsverfahren festgelegt, um repräsentative Elemente zu ziehen.
Der Begriff „Stichprobe“ bezeichnet eine kleine Teilmenge der sogenannten Grundgesamtheit, deren Auswahl nach bestimmten Kriterien erfolgen sollte, um verallgemeinerbare Aussagen treffen zu können.
Die Ziehung einer Stichprobe hat einen sehr pragmatischen Ursprung, nämlich jenen, dass die Befragung der Grundgesamtheit (Vollerhebung, z. B. der österreichischen Gesamtbevölkerung) nicht (oder nur sehr aufwendig) möglich ist und den Rahmen einer Untersuchung meist sprengen würde. Allerdings ist bei sozialwissenschaftlichen Fragen anzunehmen, dass gezogene Stichproben auch unter sehr guten Überlegungen und Bedingungen die Verteilung der Merkmale in der Population nicht exakt abbilden. Man müsste im Vorfeld bereits exakte Angaben über Verteilungen und Merkmalsausprägungen haben, was in der Realität kaum gegeben ist. Nichtsdestotrotz ist der grundsätzliche Zugang bei der Ziehung von Stichproben das sogenannte Induktionsprinzip (vom lateinischen inductio, Hineinführen), bei dem vom besonderen Fall auf den allgemeinen geschlossen wird.
„Unter Grundgesamtheit ist diejenige Menge von Individuen, Fällen, Ereignisse zu verstehen, auf die sich die Aussagen der Untersuchung beziehen sollen und die im Hinblick auf die Fragestellung und Operationalisierung vorher eindeutig abgegrenzt werden muss“ (Kromrey, 2009, S. 255).
Beispiele für Grundgesamtheiten sind: alle BewohnerInnen von Wien, alle RaucherInnen einer Zigarettenmarke in Österreich, alle RechtshänderInnen, alle ostösterreichischen StudentInnen einer bestimmten Studienrichtung etc.
Eine gezogene Stichprobe sollte die Grundgesamtheit möglichst genau abbilden. Je besser diese kleine Teilmenge die Grundgesamtheit abbildet, desto präzisere Aussagen können über sie gemacht werden. Dies stellt jedoch eine gewisse Herausforderung dar, denn die Repräsentativität in allen Merkmalen kann in den seltensten Fällen im statistischen Sinne erfüllt werden, besonders dann, wenn die Untersucherin/der Untersucher keinerlei Hinweise auf die Verteilung der relevanten einzelnen Variablen in der Stichprobe hat.
Neben der Art und Weise, wie die Stichprobe gezogen (zufallsgesteuert bzw. nicht zufallsgesteuert) wird, ist natürlich auch deren Größe von Bedeutung. Im Allgemeinen kann jedoch eine auch noch so große Stichprobe gravierende Fehler bei der Stichprobenziehung nicht wettmachen. Möchte man beispielsweise etwas über das Durchschnittseinkommen der StudentInnen wissen und befragt dazu fünftausend Studierende, wird man stark verzerrte Ergebnisse erhalten, wenn diese fünftausend Personen zum Großteil nebenberuflich studieren, also vollwertige Einkommen haben. Diese Stichprobe wäre nicht repräsentativ für „die StudentInnen“, wenn diese zum Großteil eben nicht nur nebenberuflich studieren. Es würde zu einem „Bias“ kommen, einer systematischen Verzerrung. Die Stichprobe müsste, um zu sinnvollen Schlussfolgerungen zu kommen, so gezogen werden, dass sie die realen Verhältnisse gut abbildet – eine Vorerhebung der Verteilungen wäre unerlässlich.
An dieser Stelle sollen nun die in den Sozialwissenschaften gängigen Stichprobenarten dargestellt werden. Ein besonderes Augenmerk liegt dabei auf der Zufallsstichprobe, welche die häufigste Variante darstellt.
1.2.1 Einfache Zufallsstichprobe (Random Sample)
Liegen, wie oben erwähnt, keinerlei Hinweise auf die Verteilung relevanter Variablen in der Grundgesamtheit vor, empfiehlt sich die Ziehung einer Zufallsstichprobe (Random Samples), denn bei dieser Stichprobe hat dann jedes Merkmal die gleiche Wahrscheinlichkeit, in die relevante Stichprobe gezogen zu werden.
„Eine Zufallsstichprobe ist dadurch gekennzeichnet, dass jedes Element der Grund gesamtheit mit gleicher Wahrscheinlichkeit ausgewählt werden kann“ (Bortz, 2010, S. 87).
Man spricht in diesem Fall von einer reinen (einfachen) Zufallsstichprobe (Simple Random Sample). Die Wichtigkeit dieser Stichprobenziehung in den Sozialwissenschaften muss besondere Beachtung erhalten. Es ist dies oft die einzige Möglichkeit des Zugangs.