Sadece LitRes`te okuyun

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «Astronomical Curiosities: Facts and Fallacies», sayfa 5

Yazı tipi:

CHAPTER X
Uranus and Neptune

From observations of Uranus made in 1896, M. Leo Brenner concluded that the planet rotates on its axis in about 8½ hours (probably 8h 27m). This is a short period, but considering the short periods of Jupiter and Saturn there seems to be nothing improbable about it.

Prof. Barnard finds that the two inner satellites of Uranus are difficult objects even with the great 36-inch telescope of the Lick Observatory! They have, however, been photographed at Cambridge (U.S.A.) with a 13-inch lens, although they are “among the most difficult objects known.”174

Sir William Huggins in 1871 found strong absorption lines (six strong lines) in the spectrum of Uranus. One of these lines indicated the presence of hydrogen, a gas which does not exist in our atmosphere. Three of the other lines seen were situated near lines in the spectrum of atmospheric air. Neither carbonic acid nor sodium showed any indications of their presence in the planet’s spectrum. A photograph by Prof. Slipher of Neptune’s spectrum “shows the spectrum of this planet to contain many strong absorption bands. These bands are so pronounced in the part of the spectrum between the Fraunhofer lines F and D, as to leave the solar spectrum unrecognizable… Neptune’s spectrum is strikingly different from that of Uranus, the bands in the latter planet all being reinforced in Neptune. In this planet there are also new bands which have not been observed in any of the other planets. The F line of hydrogen is remarkably dark … this band is of more than solar strength in the spectrum of Uranus also. Thus free hydrogen seems to be present in the atmosphere of both these planets. This and the other dark bands in these planets bear evidence of an enveloping atmosphere of gases which is quite unlike that which surrounds the earth.”175

With the 18-inch equatorial telescope of the Strasburgh Observatory, M. Wirtz measured the diameter of Neptune, and found from forty-nine measures made between December 9, 1902, and March 28, 1903, a value of 2″·303 at a distance of 30·1093 (earth’s distance from sun = 1). This gives a diameter of 50,251 kilometres, or about 31,225 miles,176 and a mean density of 1·54 (water = 1; earth’s mean density = 5·53). Prof. Barnard’s measures gave a diameter of 32,900 miles, a fairly close agreement, considering the difficulty of measuring so small a disc as that shown by Neptune.

The satellite of Neptune was photographed at the Pulkown Observatory in the year 1899. The name Triton has been suggested for it. In the old Greek mythology Triton was a son of Neptune, so the name would be an appropriate one.

The existence of a second satellite of Neptune is suspected by Prof. Schaeberle, who thinks he once saw it with the 36-inch telescope of the Lick Observatory “on an exceptionally fine night” in 1895.177 But this supposed discovery has not yet been confirmed. Lassell also thought he had discovered a second satellite, but this supposed discovery was never confirmed.[178]

The ancient Burmese mention eight planets, the sun, the moon, Mercury, Venus, Mars, Jupiter, Saturn, and another named Râhu, which is invisible. It has been surmised that “Râhu” is Uranus, which is just visible to the naked eye, and may possibly have been discovered by keen eyesight in ancient times. The present writer has seen it several times without optical aid in the West of Ireland, and with a binocular field-glass of 2 inches aperture he found it quite a conspicuous object.

When Neptune was visually discovered by Galle, at Berlin, he was assisted in his observation by Prof. d’Arrest. The incident is thus described by Dr. Dreyer, “On the night of June 14, 1874, while observing Coggia’s comet together, I reminded Prof. d’Arrest how he had once said in the course of a lecture, that he had been present at the finding of Neptune, and that ‘he might say it would not have been found without him.’ He then told me (and I wrote it down the next day), how he had suggested the use of Bremiker’s map (as first mentioned by Dr. Galle in 1877) and continued, ‘We then went back to the dome, where there was a kind of desk, at which I placed myself with the map, while Galle, looking through the refractor, described the configurations of the stars he saw. I followed them on the map one by one, until he said: “And then there is a star of the 8th magnitude, in such and such a position,” whereupon I immediately exclaimed: “That star is not on the map.”’”178 This was the planet. But it seems to the present writer that if Galle or d’Arrest had access to Harding’s Atlas (as they probably had) they might easily have found the planet with a good binocular field-glass. As a matter of fact Neptune is shown in Harding’s Atlas (1822) as a star of the 8th magnitude, having been mistaken for a star by Lalande on May 8 and 10, 1795; and the present writer has found Harding’s 8th magnitude stars quite easy objects with a binocular field-glass having object-glasses of two inches diameter, and a power of about six diameters.

Supposed Planet beyond Neptune. – The possible existence of a planet beyond Neptune has been frequently suggested. From considerations on the aphelia of certain comets, Prof. Forbes in 1880 computed the probable position of such a body. He thought this hypothetical planet would be considerably larger than Jupiter, and probably revolve round the sun at a distance of about 100 times the earth’s mean distance from the sun. The place indicated was between R.A. 11h 24m and 12h 12m, and declination 0° 0′ to 6° 0′ north. With a view to its discovery, the late Dr. Roberts took a series of eighteen photographs covering the region indicated. The result of an examination of these photographs showed, Dr. Roberts says, that “no planet of greater brightness than a star of the 15th magnitude exists on the sky area herein indicated.” Prof. W. H. Pickering has recently revived the question, and has arrived at the following results: Mean distance of the planet from the sun, 51·9 (earth’s mean distance = 1); period of revolution, 373½ years; mass about twice the earth’s mass; probable position for 1909 about R.A. 7h 47m, north declination 21°, or about 5° south-east of the star κ Geminorum. The supposed planet would be faint, its brightness being from 11½ to 13½, according to the “albedo” (or reflecting power) it may have.179

Prof. Forbes has again attacked the question of a possible ultra-Neptunian planet, and from a consideration of the comets of 1556, 1843 I, 1880 I, and 1882 II, finds a mean distance of 105·4, with an inclination of the orbit of 52° to the plane of the ecliptic. This high inclination implies that “during the greatest part of its revolution it is beyond the zodiac,” and this, Mr. W. T. Lynn thinks, “may partly account for its not having hitherto been found by observation.”180

From a consideration of the approximately circular shape of the orbits of all the large planets of the solar system, Dr. See suggests the existence of three planets outside Neptune, with approximate distances from the sun of 42, 56, and 72 respectively (earth’s distance = 1), and recommends a photographic search for them. He says, “To suppose the planetary system to terminate with an orbit so round as that of Neptune is as absurd as to suppose that Jupiter’s system terminates with the orbit of the fourth satellite.”181

According to Grant, even twenty years before the discovery of Neptune the error of Prof. Adams’ first approximation amounted to little more than 10°.182

CHAPTER XI
Comets

We learn from Pliny that comets were classified in ancient times, according to their peculiar forms, into twelve classes, of which the principal were: Pogonias, bearded; Lampadias, torch-like; Xiphias, sword-like; Pitheus, tun-like; Acontias, javelin-like; Ceratias, horn-like; Disceus, quoit-like; and Hippias, horse-mane-like.183

Of the numerous comets mentioned in astronomical records, comparatively few have been visible to the naked eye. Before the invention of the telescope (1610) only those which were so visible could, of course, be recorded. These number about 400. Of the 400 observed since then, some 70 or 80 only have been visible by unaided vision; and most of these now recorded could never have been seen without a telescope. During the last century, out of 300 comets discovered, only 13 were very visible to the naked eye. Hence, when we read in the newspapers that a comet has been discovered the chances are greatly against it becoming visible to the naked eye.184

Although comparatively few comets can be seen without a telescope, they are sometimes bright enough to be visible in daylight! Such were those of B.C. 43, A.D. 1106, 1402, 1532, 1577, 1744, 1843, and the “great September comet” of 1882.

If we except the great comet of 1861, through the tail of which the earth is supposed to have passed, the comet which came nearest to the earth was that of 1770, known as Lexell’s, which approached us within two millions of miles, moving nearly in the plane of the ecliptic. It produced, however, no effect on the tides, nor on the moon’s motion, which shows that its mass must have been very small. It was computed by Laplace that if its mass had equalled that of the earth, the length of our year would have been shortened by 2 hours 47 minutes, and as there was no perceptible change Laplace concluded that the comet’s mass did not exceed 1⁄5000th of the earth’s mass. This is the comet which passed so near to Jupiter that its period was reduced to 5½ years. Owing to another near approach in 1779 it became invisible from the earth, and is now lost.185 Its identity with the recently discovered eighth satellite of Jupiter has been suggested by Mr. George Forbes (see under “Jupiter”). At the near approach of Lexell’s comet to the earth in 1770, Messier, “the comet ferret,” found that its head had an apparent diameter of 2½°, or nearly five times that of the moon!

Another case of near approach to the earth was that of Biela’s comet at its appearance in 1805. On the evening of December 9 of that year, the comet approached the earth within 3,380,000 miles.186

The comet of A.D. 1106 is stated to have been seen in daylight close to the sun. This was on February 4 of that year. On February 10 it had a tail of 60° in length, according to Gaubil.187

The comet of 1577 seems to have been one of the brightest on record. According to Tycho Brahé, it was visible in broad daylight. He describes the head as “round, bright, and of a yellowish light,” with a curved tail of a reddish colour.188

The comet of 1652 was observed for about three weeks only, and Hevelius and Comiers state that it was equal to the moon in apparent size! This would indicate a near approach to the earth. An orbit computed by Halley shows that the least distance was about 12 millions of miles, and the diameter of the comet’s head rather less than 110,000 miles, or about 14 times the earth’s diameter.

According to Mr. Denning, “most of the periodical comets at perihelion are outside the earth’s orbit, and hence it follows that they escape observation unless the earth is on the same side of the sun as the comet.”189

It was computed by M. Faye that the volume of the famous Donati’s comet (1858) was about 500 times that of the sun! On the other hand, he calculated that its mass (or quantity of matter it contained) was only a fraction of the earth’s mass. This shows how almost inconceivably tenuous the material forming the comet must have been – much more rarefied, indeed, than the most perfect vacuum which can be produced in an air-pump. This tenuity is shown by the fact that stars were seen through the tail “as if the tail did not exist.” A mist of a few hundred yards in thickness is sufficient to hide the stars from our view, while a thickness of thousands of miles of cometary matter does not suffice even to dim their brilliancy!

At the time of the appearance of the great comet of 1843, it was doubtful whether the comet had transited the sun’s disc. But it is now known, from careful calculations by Prof. Hubbard, that a transit really took place between 11h 28m and 12h 29m on February 27, 1843, and might have been observed in the southern hemisphere. The distance of this remarkable comet from the sun at its perihelion passage was less than that of any known comet. A little before 10 p.m. on February 27, the comet passed within 81,500 miles of the sun’s surface with the enormous velocity of 348 miles a second! It remained less than 2¼ hours north of the ecliptic, passing from the ascending to the descending node of its orbit in 2h 13m·4.190 The great comet of 1882 transited the sun’s disc on Sunday, September 17, of that year, the ingress taking place at 4h 50m 58s, Cape mean time. When on the sun the comet was absolutely invisible, showing that there was nothing solid about it. It was visible near the sun with the naked eye a little before the transit took place.191 This great comet was found by several computors to have been travelling in an elliptic orbit with a period of about eight centuries. Morrison found 712 years; Frisby, 794; Fabritius, 823; and Kreutz, 843 years.192

The great southern comet of 1887 may be described as a comet without a head! The popular idea of a comet is a star with a tail. But in this case there was no head visible – to the naked eye at least. Dr. Thome of the Cordoba Observatory – its discoverer – describes it as “a beautiful object – a narrow, straight, sharply defined, graceful tail, over 40° long, shining with a soft starry light against a dark sky, beginning apparently without a head, and gradually widening and fading as it extended upwards.”193

The great southern comet of 1901 had five tails on May 6 of that year. Two were fairly bright, and the remaining three rather faint. Mr. Gale saw a number of faint stars through the tails. The light of these seem to have been “undimmed.” Mr. Cobham noticed that the stars Rigel and β Eridani shone through one of the faint tails, and “showed no perceptible difference.”194

Prof. W. H. Pickering says that “the head of a comet, as far as our present knowledge is concerned, seems therefore to be merely a meteor swarm containing so much gaseous material that when electrified by its approach to the sun it will be rendered luminous” (Harvard Annual, vol. xxxii. part ii. p. 295) “… if the meteors and their atmospheres are sufficiently widely separated from one another, the comet may be brilliant and yet transparent at the same time.”

In the case of Swift’s comet of 1892 some periodical differences of appearance were due, according to Prof. W. H. Pickering, to a rotation of the comet round an axis passing longitudinally through the tail, and he estimated the period of rotation at about 94 to 97 hours. He computed that in this comet the repulsive force exerted by the sun on the comet’s tail was “about 39·5 times the gravitational force.”195

The comet known as 1902b approached the planet Mercury within two millions of miles on November 29 of that year. Prof. O. C. Wendell, of Harvard Observatory, made some observations on the transparency of this comet. He found with the aid of a photometer and the 15-inch telescope of the observatory that in the case of two faint stars over which the comet passed on October 14, 1902, the absorption of light by the comet was insensible, and possibly did not exceed one or two hundredths of a magnitude,196 an amount quite imperceptible to the naked eye, and shows conclusively how almost inconceivably rarefied the substance of this comet must be.

The comet known as Morehouse (1908c) showed some curious and wonderful changes. Mr. Borelly found that five tails are visible on a photographic plate taken on October 3, 1908, and the trail of an occulted star indicates a slight absorption effect. According to M. L. Rabourdin, great changes took place from day to day, and even during the course of an hour! Similar changes were recorded by G. M. Gauthier; and Prof. Barnard, who photographed the comet on 30 nights from September 2 to October 13, states that the photographs of September 30 “are unique, whilst the transformation which took place between the taking of these and the taking of the next one on October 1 was very wonderful.”197 The spectrum showed the lines of cyanogen instead of the hydrocarbon spectrum shown by most comets.

Prof. Barnard has suggested that all the phenomena of comets’ tails cannot be explained by a repulsive force from the sun. Short tails issuing from the comet’s nucleus at considerable angles with the main tail point to eruptive action in the comet itself. The rapid changes and distortions frequently observed in the tails of some comets suggest motion through a resisting medium; and the sudden increase of light also occasionally observed points in the same direction.198

It was computed by Olbers that if a comet having a mass of 1⁄2000th of the earth’s mass – which would form a globe of about 520 miles in diameter and of the density of granite – collided with the earth, with a velocity of 40 miles a second, our globe would be shattered into fragments.199 But that any comet has a solid nucleus of this size seems very doubtful; and we may further say that the collision of the earth with any comet is highly improbable.

It seems to be a common idea that harvests are affected by comets, and even “comet wines” are sometimes spoken of. But we know that the earth receives practically no heat from the brightest comet. Even in the case of the brilliant comet of 1811, one of the finest on record, it was found that “all the efforts to concentrate its rays did not produce the slightest effect on the blackened bulb of the most sensitive thermometer.” Arago found that the year 1808, in which several comets were visible, was a cold year, “and 1831, in which there was no comet, enjoyed a much higher temperature than 1819, when there were three comets, one of which was very brilliant.”200 We may, therefore, safely conclude that even a large comet has no effect whatever on the weather.

From calculations on the orbit of Halley’s comet, the next return of which is due in 1910, Messrs. Cowell and Crommelin find that the identity of the comet shown on the Bayeux Tapestry with Halley’s comet is now “fully established.” They find that the date of perihelion passage was March 25, 1066, which differs by only 4 days from the date found by Hind. The imposing aspect of the comet in 1066 described in European chronicles of that time is confirmed by the Chinese Annals. In the latter records the brightness is compared to that of Venus, and even with that of the moon! The comparison with the moon was probably an exaggeration, but the comet doubtless made a very brilliant show. In the Bayeux Tapestry the inscription on the wall behind the spectators reads: “isti mirant stella.” Now, this is bad Latin, and Mr. W. T. Lynn has made the interesting suggestion that some of the letters are hidden by the buildings in front and that the real sentence is “isti mirantur stellam.”201 The present writer has examined the copy of the Bayeux Tapestry which is in the Dublin Museum, and thinks that Mr. Lynn’s suggestion seems very plausible. But the last letter of stellam is apparently hidden by the comet’s tail, which does not seem very probable!

The conditions under which the comet will appear in 1910 are not unlike those of 1066 and 1145. “In each year the comet was discovered as a morning star, then lost in the sun’s rays; on its emergence it was near the earth and moved with great rapidity, finally becoming stationary in the neighbourhood of Hydra, where it was lost to view.”202 In 1910 it will probably be an evening star before March 17, and after May 11, making a near approach to the earth about May 12. About this time its apparent motion in the sky will be very rapid. As, however, periodical comets – such as Halley’s – seem to become fainter at each return, great expectations with reference to its appearance in 1910 should not be indulged in.

The appearance of Halley’s comet in A.D. 1222 is thus described by Pingré – a great authority on comets – (quoting from an ancient writer) —

“In autumn, that is to say in the months of August and September, a star of the first magnitude was seen, very red, and accompanied by a great tail which extended towards the top of the sky in the form of a cone extremely pointed. It appeared to be very near the earth. It was observed (at first?) near the place of the setting sun in the month of December.”

With reference to its appearance in the year 1456, when it was of “vivid brightness,” and had a tail of 60° in length, Admiral Smyth says,203 “To its malign influence were imputed the rapid successes of Mahomet II., which then threatened all Christendom. The general alarm was greatly aggravated by the conduct of Pope Callixtus III., who, though otherwise a man of abilities, was a poor astronomer; for that pontiff daily ordered the church bells to be rung at noon-tide, extra Ave-Marias to be repeated, and a special protest and excommunication was composed, exorcising equally the Devil, the Turks, and the comet.” With reference to this story, Mr. G. F. Chambers points out204 that it is probably based on a passage in Platina’s Vitæ Pontificum. But in this passage there is no mention made of excommunication or exorcism, so that the story, which has long been current, is probably mythical. In confirmation of this view, the Rev. W. F. Rigge has shown conclusively205 that no bull was ever issued by Pope Callixtus III. containing a reference to any comet. The story would therefore seem to be absolutely without foundation, and should be consigned to the limbo of all such baseless myths.

With reference to the appearance of Halley’s comet, at his last return in 1835, Sir John Herschel, who observed it at the Cape of Good Hope, says —

“Among the innumerable stars of all magnitudes, from the ninth downwards, which at various times were seen through it, and some extremely near to the nucleus (though not exactly on it) there never appeared the least ground for presuming any extinction of their light in traversing it. Very minute stars indeed, on entering its brightest portions, were obliterated, as they would have been by an equal illumination of the field of view; but stars which before their entry appeared bright enough to bear that degree of illumination, were in no case, so far as I could judge, affected to a greater extent than they would have been by so much lamp-light artificially introduced.”206

It is computed by Prof. J. Holetschak that, early in October, 1909, Halley’s comet should have the brightness of a star of about 14½ magnitude.207 It should then – if not detected before – be discoverable with some of the large telescopes now available.

According to the computations of Messrs. Cowell and Crommelin, the comet should enter Pisces from Aries in January, 1910. “Travelling westward towards the star γ Piscium until the beginning of May, and then turning eastward again, it will travel back through the constellations Cetus, Orion, Monoceros, Hydra, and Sextans.” From this it seems that observers in the southern hemisphere will have a better view of the comet than those in northern latitudes. The computed brightness varies from 1 on January 2, 1910, to 1112 on May 10. But the actual brightness of a comet does not always agree with theory. It is sometimes brighter than calculation would indicate.

According to Prof. O. C. Wendell, Halley’s comet will, on May 12, 1910, approach the earth’s orbit within 4·6 millions of miles; and he thinks that possibly the earth may “encounter some meteors,” which are presumably connected with the comet. He has computed the “radiant point” of these meteors (that is, the point from which they appear to come), and finds its position to be R.A. 22h 42m·9, Decl. N. 1° 18′. This point lies a little south-west of the star β Piscium.

According to Dr. Smart, the comet will, on June 2, “cross the Equator thirteen degrees south of Regulus, and will then move slowly in the direction of φ Leonis. The comet will be at its descending node on the ecliptic in the morning of May 16, and the earth will pass through the node on the comet’s orbit about two and a half days later. The comet’s orbit at the node is about 13 million miles within that of the earth. Matter repelled from the comet’s nucleus by the sun with a velocity of about 216,000 miles per hour, would just meet the earth when crossing the comet’s orbit plane. Matter expelled with a velocity of 80,000 miles per hour, as in the case of Comet Morehouse, would require seven days for the journey. Cometary matter is said to have acquired greater velocities than this, for (according to Webb, who quotes Chacornac) Comet II., 1862, shot luminous matter towards the sun, with a velocity of nearly 2200 miles per second. It is therefore possible that matter thrown off by the comet at the node may enter our atmosphere, in which case we must hope that cyanogen, which so often appears in cometary spectra, may not be inconveniently in evidence.”208

Cyanogen is, of course, a poisonous gas, but cometary matter is so rarefied that injurious effects on the earth need not be feared.

If we can believe the accounts which have been handed down to us, some very wonderful comets were visible in ancient times. The following may be mentioned: —

B.C. 165. The sun is said to have been “seen for several hours in the night.” If this was a comet it must have been one of extraordinary brilliancy.209

B.C. 146. “After the death of Demetrius, king of Syria, the father of Demetrius and Antiochus, a little before the war in Achaia, there appeared a comet as large as the sun. Its disc was first red, and like fire, spreading sufficient light to dissipate the darkness of night; after a little while its size diminished, its brilliancy became weakened, and at length it entirely disappeared.”210

B.C. 134. It is recorded that at the birth of Mithridates a great comet appeared which “occupied the fourth part of the sky, and its brilliancy was superior to that of the sun.” (?)211

B.C. 75. A comet is described as equal in size to the moon, and giving as much light as the sun on a cloudy day. (!)212

A.D. 531. In this year a great comet was observed in Europe and China. It is described as “a very large and fearful comet,” and was visible in the west for three weeks. Hind thinks that this was an appearance of Halley’s comet,213 and this has been confirmed by Mr. Crommelin.

A.D. 813, August 4. A comet is said to have appeared on this date, of which the following curious description is given: “It resembled two moons joined together; they separated, and having taken different forms, at length appeared like a man without a head.” (!)214

A.D. 893. A great comet is said to have appeared in this year with a tail 100° in length, which afterwards increased to 200°!215

A.D. 1402. A comet appeared in February of this year, which was visible in daylight for eight days. “On Palm Sunday, March 19, its size was prodigious.” Another comet, visible in the daytime, was seen from June to September of the same year.

When the orbit of the comet known as 1889 V was computed, it was found that it had passed through Jupiter’s system in 1886 (July 18-21). The calculations show that it must have passed within a distance of 112,300 miles of the planet itself – or less than half the moon’s distance from the earth – and “its centre may possibly have grazed the surface of Jupiter.”216

Sir John Herschel thought that the great comet of 1861 was by far the brightest comet he had ever seen, those of 1811 and 1858 (Donati’s) not excepted.217 Prof. Kreutz found its period of revolution round the sun to be about 409 years, with the plane of the orbit nearly at right angles to the plane of the ecliptic.

On November 9, 1795, Sir William Herschel saw the comet of that year pass centrally over a small double star of the 11th and 12th magnitudes, and the fainter of the two components remained distinctly visible during the comet’s transit over the star. This comet was an appearance of the comet now known as Encke’s.218 Struve saw a star of the 10th magnitude through nearly the brightest part of Encke’s comet on November 7, 1828, but the star’s light was not dimmed by the comet.

Sir John Herschel saw a cluster of stars of the 16th or 17th magnitude through Biela’s comet, although the interposed cometary matter must have been at least 50,000 miles in thickness.219

Bessel found that on September 29, 1835, a star of the 10th magnitude shone with undimmed lustre through the tail of Halley’s comet within 8 seconds of arc of the central point of the head. At Dorpat (Russia) Struve saw the same star “in conjunction only 2″·2 from the brightest point of the comet. The star remained continuously visible, and its light was not perceptibly diminished whilst the nucleus of the comet seemed to be almost extinguished before the radiance of the small star of the 9th or 10th magnitude.”220

Webb says —

“Donati saw a 7 mg. star enlarged so as to show a sensible disc, when the nucleus of comet III., 1860, passed very near it. Stars are said to have started, or become tremulous, during occultations by comets. Birmingham observed the comet of Encke illuminated by a star over which it passed, August 23, 1868; and Klein, in 1861, remarked an exceptional twinkling in 5 mg. stars involved in the tail.”221

The comet of 1729 had the greatest perihelion distance of any known comet;222 that is, when nearest to the sun, it did not approach the central luminary within four times the earth’s distance from the sun!

Barnard’s comet, 1889 I., although it never became visible to the naked eye, was visible with a telescope from September 2, 1888, to August 18, 1890, or 715 days – the longest period of visibility of any comet on record. When last seen it was 6¼ times the earth’s distance from the sun, or about 580 millions of miles,223 or beyond the orbit of Jupiter!

174.Nature, August 29, 1889.
175.Astrophysical Journal, vol. 26 (1907), p. 62.
176.Bulletin, Ast. Soc. de France, January, 1904.
177.Humboldt’s Cosmos, vol. iv. p. 532.
178.Copernicus, vol. ii. p. 64.
179.Knowledge, May, 1909.
180.Journal, British Astronomical Association, January, 1909, p. 132.
181.Ast. Nach., No. 4308.
182.History of Physical Astronomy, p. 204.
183.Smyth’s Celestial Cycle, pp. 210, 211.
184.Poor, The Solar System, p. 274.
185.Celestial Cycle, p. 246.
186.Nature, October 2, 1879.
187.Ibid., May 6, 1880.
188.Ibid., February 19, 1880.
189.Nature, September 30, 1897.
190.Nature, August 5, 1875.
191.Ibid., October 12, 1882, and Copernicus, vol. iii. p. 85.
192.Nature, May 8, 1884.
193.Ibid., June 16, 1887.
194.Journal, B.A.A., December 13, 1901.
195.Nature, September 20, 1900.
196.Ast. Nach., No. 3868, and Nature, March 12, 1903.
197.Nature, November 13, 1908.
198.Nature, December 7, 1905.
199.Celestial Cycle, p. 259.
200.Celestial Cycle, p. 260.
201.Journal, B.A.A., April, 1907.
202.Monthly Notices, R.A.S., March, 1908.
203.Celestial Cycle, p. 231.
204.Journal, B.A.A., July, 1908.
205.Popular Astronomy, October, 1908.
206.Cape Obs., p. 401.
207.Nature, July 2, 1908.
208.Journal, B.A.A., January 20, 1909, pp. 123-4.
209.Chambers’ Handbook of Astronomy, Catalogue of Comets.
210.Seneca, quoted by Chambers, Handbook, vol. i. p. 554 (Fourth Edition).
211.Ibid.
212.Ibid.
213.Ibid., p. 534.
214.Ibid.
215.Ma-tuoan-lin, quoted by Chambers, Handbook, p. 570.
216.Astronomy and Astrophysics, 1893, p. 798.
217.The Observatory, October, 1898.
218.Grant’s History of Physical Astronomy, p. 293.
219.Ibid., p. 294.
220.Humboldt’s Cosmos, vol. i. pp. 89, 90 (Otté’s translation).
221.Celestial Objects, vol. i. p. 211, footnote.
222.Denning, Telescopic Work for Starlight Evenings, p. 248.
223.Ibid., p. 248.
Yaş sınırı:
12+
Litres'teki yayın tarihi:
28 eylül 2017
Hacim:
302 s. 5 illüstrasyon
Telif hakkı:
Public Domain
Metin
Ortalama puan 4,5, 2 oylamaya göre