Sadece LitRes`te okuyun

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «Omphalos: An Attempt to Untie the Geological Knot», sayfa 9

Yazı tipi:

The great dilated lip, and the long finger-like processes of its edge, had no existence in the youthful days of the shell; they are marks of adult age: when young, the shell was simply spiral, with a thin straight lip bounding a narrow aperture.

Observe also a far more beautiful creature by its side, the Tiger Cowry (Cypræa tigris). Its shell is now entirely enveloped in the meeting wings of the great fleshy mantle, which is mottled with changing hues; and its foot or crawling disk covers a space three or four times as large as the shell. On lifting it in our hand, the whole of this array of soft flesh has been rapidly retracted, and has wholly disappeared within that very narrow orifice, bordered with toothed projections, on the under side of the shell, which we can hardly believe capable of receiving a twentieth part of the bulk that has vanished within it. And now we see nothing but the shell, with its smooth rounded back, marked with dark spots, its white inferior surface cleft by this longitudinal denticulate aperture, and its brilliant porcellanous varnish over the whole.

Now here is evidence of change and progress again. This Cowry-shell is very unlike that of an Olive, with a simple spire, an oval body, a smooth thin lip, and a wide orifice; and as unlike that of a Nautilus. Yet it has passed through both of these stages before it was disguised as we see it now. When it escaped from the egg-shell, it was a minute Pteropod, with two great ciliated disks, inhabiting a transparent nautiloid shell, and swimming giddily about in a revolving fashion. By and by, the tiny shell increased, and the outer whorl lengthened, putting on a long-oval figure. Then – that is, after a considerable period occupied in increasing the dimensions of the shell in this form – it began to assume the adult appearance. The outer lip, which had hitherto been thin, gradually thickened and encroached upon the spire, and the mantle began to secrete and deposit on the outer surface the coat of glassy enamel.

At length the thickening of the lips proceeded to such an extent as almost to conceal the spire, and to reduce the aperture to a narrow line, the edges of which were now thickly plaited with the tooth-like ridges so characteristic of the genus. The lobes of the mantle now protrude through this aperture; and, expanding on each side, have deposited all over the exterior of the shell a coat of glassy enamel, studded with dark round spots or clouds, which entirely conceals the surface with the markings that were formerly visible upon it.

MUREX TENUISPINA.

Yonder Thorny Woodcock (Murex tenuispina) is a still more striking shell than either, and one whose periodic growths are peculiarly well marked. It is covered at regular intervals with rows of shelly spines, still longer and more numerous than those we lately admired in the Dione. Each series crowns a thickened ridge, which runs across the whorl, as regards the direction of its growth, but longitudinally as regards the general figure of the shell.

Now, the increase of the shell in the Univalves is performed almost exactly as in the Bivalves; namely, by the protrusion and eversion of the mantle on the existing edge. And, therefore, each of these thorny ridges, separated as they are by an interval of just two-thirds of a whorl, marks the termination of a new growth, the shelly matter rising up at the margin in this thickened ridge, which bristles with elongated points.

In this specimen we can trace ten such ridges, whence we legitimately infer ten distinct periods through which this animal has passed, besides the nautiloid stage under which all the creatures of this Class commence existence.

Yet, since each of these three univalves has been this day created, these inferences are deceptive. The Scorpion-shell was never otherwise than dilated and digitated. The Cowry has never had a lip that was not thickened, nor an exterior that was not porcellanous. The Woodcock has never known a moment in which its thorns were less numerous than they are now.

Notice that fine round shell carried along the floor of the sea, by means of a great fleshy tortoiseshell-coloured75 body, which, with a head of many spreading tentacles applied to the ground, crawls with a tolerably quick progress.76 It is the Pearly Nautilus.

The amplitude of the beautiful nacreous shell is by no means a measure of the dimensions of the animal; for this merely sits within the shallow mouth, like a Welsh fisherman in his coracle. If we remove the creature, we shall find the cavity bounded by a pearly floor, in the centre of which is a slender tube running down from it. On breaking away this floor, we expose an empty chamber, with a similar pearly floor, through which passes the shelly tube, continued through the middle of the chamber, and running down to the next. Thus we should find the whole interior of the shell occupied by a series of these empty chambers, fifty or upwards in number, each less than its predecessor (rather successor, if we regard them in the order of development), until we can trace them no longer in the minute centre of the spire.

Without dwelling on the function of these chambers, farther than to say that they appear admirably contrived to make the animal with its shell either heavier or lighter than the surrounding fluid, by forcing water into them through the tube, and thus condensing the contained air, or by relaxing the pressure, and allowing the elasticity of the air to exclude the water, – our business is just with the formation of the septa, as an evidence of periodic development.77

"The septa are formed periodically, but it must not be supposed that the shell-muscles ever become detached, or that the animal moves the distance of a chamber all at once. It is most likely that the adductors grow only in front, and that a constant waste takes place behind, so that they are always moving onward, except when a new septum is to be formed; the septa indicate periodic rests."78

These periodic alternations of rest and action, however, it is obvious, can never have really existed in an organism which has but this instant been created. The appearances, therefore, which indicate them, are illusory, considered as testimonies to actual time.

You are aware that what is often spoke of as the "bone" in this Cuttlefish (Sepia officinalis), is only a concealed shell; and I need not to dissect the animal to acquaint you that it is a highly interesting structure. A deservedly eminent physiologist shall describe it for us.

"The outer shelly portion of this body consists of horny layers, alternating with calcified layers, in which last may be seen a hexagonal arrangement. The soft, friable substance, that occupies the hollow of this boat-shaped shell, is formed of a number of delicate plates, running across it from one side to the other in parallel directions, but separated by intervals several times wider than the thickness of the plates; and these intervals are in great part filled up by what appear to be fibres, or slender pillars, passing from one plate or floor to another. A more careful examination shows, however, that instead of a large number of detached pillars, there exists a comparatively small number of very thin, sinuous laminæ, which pass from one surface to the other, winding and doubling upon themselves, so that each lamina occupies a considerable space. Their precise arrangement is best seen by examining the parallel plates, after the sinuous laminæ have been detached from them; the lines of junction being distinctly indicated upon these. By this arrangement, each layer is most effectually supported by those with which it is connected above and below; and the sinuosity of the thin intervening laminæ, answering exactly the same purpose as the "corrugation" given to iron plates for the sake of diminishing their flexibility, adds greatly to the strength of this curious texture, which is at the same time lightened by the large amount of space between the parallel plates that intervenes between the sinuosities of the laminæ."79

Now the delicately thin calcareous plates have all been formed in succession, "the first formed being at the outer part and posterior termination of the shell, and the succeeding new layers extending always more forwards than the edges of the old."80 They exhibit then many hundreds of distinct deposits, each the result of a separate process, each the work of a definite period of time. The "cuttle-bone" is an autographic record, indubitably genuine, of the Cuttlefish's history.

Yes, it is certainly genuine; it is as certainly autographic: but it is not true. That Cuttle has been this day created.

IX
PARALLELS AND PRECEDENTS

(Vertebrate Animals.)

"The organisation of the body at each epoch may be truly said to be the resultant of all the material changes which it has undergone during the preceding periods." —Dr. Carpenter; Human Physiology, p. 903.

The Invertebrata then agree in one story, and that story is the same as what the plants had told us before. Let us try if the Vertebrate creatures bear them out.

From this promontory we can look far down into the clear profundity of the still and smooth sea. What is that large object that plays hither and thither yonder, now shooting ahead, now resting on his oars, now turning on his course, now cutting the surface, now descending to the depths? It is a full-grown Sword-fish, some ten feet long. We are sufficiently near him to discern that he has one short but high dorsal fin, near the head, and a minute one close to the caudal, the whole intermediate region being smooth. But this is a mark of adult age; for in early life this same species is furnished with one long and high dorsal, which is continuous from the occiput to the vicinity of the tail-fin. The remotely divided dorsal here tells of many years of life; but tells deceitfully, for the Sword-fish is but just created.

Ha! the Sword-fish has darted away, like lightning, after a finny victim. See with what doublings and windings he pursues it, and how the terrified prey uses all its powers to escape from its gigantic enemy! Now they near the shore; and now the frightened quarry has leaped out of the sea upon yonder flat shelf of rock, where it lies gasping and floundering, delivered indeed from its pursuer, but only to die by being drowned in the air. We will descend from the cliffs, and look at it.

It is a Gilt-head (Chrysophrys aurata). Life is extinct now; but the brilliant colours and fine metallic reflections are scarcely dimmed – the silvery belly – the azure fins – the sides that gleam like polished steel, inlaid with bands of burnished gold!

I will pluck a scale from this brilliant silvery surface. Its hinder, or free edge, is beset with fine flexible crystalline points, arranged in many successive rows, overlapping each other. The front, or attached edge, is cut in a scolloped pattern, the extremities of undulations that radiate from a common point behind the centre. The whole surface, except the hinder portion that is studded with imbricated points, is covered with an immense multitude of fine concentric lines, which follow the form of the general outline. These are marks of successive increase; for every one of the lines is the margin of a lamina, the aggregation of which makes up the thickness of the scale. The laminæ can be separated by long maceration in water; and then we see that they are laid one on another in regular order, the uppermost being the smallest, and the first formed; the last made, which is the largest, being now in contact with the skin.

Every scale is therefore a document, on which is indelibly written the record of a multitude of processes, all effected in the past history of the fish. The successively deposited laminæ are exactly analogous to those of calcareous substance in the shell of the bivalve;81 and the evidence is of exactly the same character as what we lately read off from the valve of the Dione. But, just as in that example, too, the overruling fact of recent creation precludes our deduction of time from the evidence, since it proves the development to have been prochronic.

I see yonder a more terrific tyrant of the sea than the Sword-fish. It is the grisly Shark (Carcharodon). How stealthily he glides along, cutting the glittering surface of the sea with his dorsal, and now and then protruding just the tip of the upper lobe of his caudal in the wake of the other! Let us go and look into his mouth; for neither animals nor elements present any impediments to these investigations of ours. Is not this an awful array of knives and lancets? Is not this a case of surgical instruments enough to make you shudder? What would be the amputation of your leg to this row of triangular scalpels, each an inch and a half in diameter? moved, too, by these powerful muscles?

But observe the arrangement of these most formidable teeth. They are not confined to a single row as ours are, but each is succeeded by another lying behind it, that by another, and another, and another, – why, there are a dozen ranks of teeth, lying regularly packed one behind the other. The object of this arrangement is a constant supply of new teeth, as those in use become broken off, or wasted by the sloughing away of the exterior half-ossified crust of the cartilaginous jaw, to which their base is fastened by ligaments. Only one row, the outer one, is in use at once, and this row stands erect; the others lie flat on each other (more and more completely as they recede from the outer row); a reserve of weapons in readiness for use, when those now employed are done with. There is a continual growth of the surface to which the teeth are fastened, from within outwards; so that each of the reserve rows will in turn be brought to the edge of the jaw, when it will be thrown up into the erect position, while the preceding, now turned out of the mouth by the gradual eversion of the surface, sloughs away and disappears as an useless incumbrance. It follows, therefore, that the teeth which we now see erect and threatening, are the successors of former ones that have passed away, and that they were once dormant like those we see behind them.

But perhaps you may say, What evidence is there that these ever had any predecessors? that they were not originally the front rank as they are now? A very fair question.

In the first place, the great size of the tooth indicates maturity; and is in keeping with the dimensions of the animal, – some twenty feet or so, – which are those of an adult, if not a full-grown individual. But adult age implies previous youth and infancy, and a gradual growth from the length of a few inches to this formidable size. The teeth are found in the embryo Shark when not more than a foot long; and it is evident that many successive generations of teeth have passed away between those pristine lancets of a line in diameter, and these of an inch and a half.

But stay; there is a peculiarity in the structure of these present teeth, which surely indicates their place to be far on in the succession. Each is seen to be finely serrated on its two outer edges, – a provision which, of course, makes them more effective dividers of flesh and bone. But this structure is not found in the teeth of young individuals, which up to a period comparatively advanced, have simply cutting edges.

Hence we are compelled by the phenomena to infer a long past existence to this animal, which yet has been called into being within an hour.

On yonder twig sits a beautiful little Tree-frog, which you would be ready to mistake for a leaf of more than usually emerald hue, but for the glittering eye, and the line of yellow edged with purple that passes down the side. Do you notice the frequent gulpings of the throat? Those are the periodic inspirations Of air, by which the creature breathes; for, having no ribs, by means of which to depress, and so to expand, the thoracic cavity, the Frog swallows the air by a voluntary action. These air-gulps afford us another example of the sort of evidence we are searching for; they are so many proofs of a past history. For the Tree-frog has not always swallowed air; there was a period in its life when it had no lungs; when it was an aquatic animal, as exclusively a water-breather as any fish. Fish-like in form it was then, as well as in habit; it was a tadpole with a long compressed muscular tail, and with external gills of several branches, but as destitute of lungs as it was of limbs. Any physiologist, looking at our little green Tree-frog, would pronounce without hesitation on the stages through which it has passed; and would describe with the most perfect confidence the order in which they took place; the gradual absorption of the branchiæ, the development of the lungs, the shrinking up and final disappearance of the tail, the budding forth of the tiny rudimentary limbs, the hinder pair first, then the fore pair, and the subsequent division of their extremities into toes; – the metamorphosis of the little fish into a little batrachian, and the gradual growth and maturation of the latter, – these are facts, – the physiologist would say, – as sure both as to their actuality and as to their order, as that the Frog is a Frog.

Ah! but the physiologist is not aware of a fact, which invalidates all his conclusions based upon experience, – the fact that the little Tree-frog has been created but this very instant.

Hark! that rattling noise is an admonition to us to tread circumspectly. It is the vibration of the horny caudal appendages of a Rattlesnake. And I see the reptile coiled up under yonder shadowing leaf. But our presence is a privileged presence, and so we may handle and examine him with impunity. The organ which produces this sound is composed of a number of hollow horny capsules, each one fitting into the next, in which it is retained loosely by a protuberance of its surface. These, being agitated at the will of the animal, produce that sound which we just now heard. The capsules are developed periodically, one being added to the number already existing every year, until as many as forty are accumulated.82 This individual, therefore, having five-and-twenty rattles, must be five-and-twenty years old.

This Snake, however, has had no past years; it has had no yesterday. Its existence commenced this hour.

Here crouches, among the thick reeds, the Leviathan of the rivers, the mailed Crocodile. His body, invested with bony ridged plates, that rise into strong serrations along the tail, seems clothed with power; and his long rows of interlocking teeth, unveiled by lips, appear grinning with perpetual rage. An experienced herpetologist would not fail to find many evidences of age in this huge reptile. First of all, he would point to its monstrous size; then to the breadth and massive thickness of the dermal plates. "The head," he would say, "in the ruggedness of its surface, shows the same thing, for in youth it was comparatively smooth; and also in the form of its outline; for in this example its length is double its breadth, whereas in youth, these measurements were nearly equal. These conical teeth, too, are by no means the same individual teeth which existed at first. If you look at the base of one, you will see that it is hollow, and that the sides of this portion are already in process of absorption; that this hollow cone is a sheath for another tooth beneath, which is destined to replace it; as this has itself replaced its predecessor. The large size of the teeth which we see, therefore, which accords with the dimensions of the jaws, is not a condition induced by gradual growth, but by a succession of sloughings and replacements; and hence the present teeth, in their size, point conclusively to others which have preceded them, but which have disappeared."

Yet nothing can be more certain, than that, in this Crocodile, which has been created to-day, the successive teeth thus witnessed to, are but ideal, that is prochronic, teeth; and that all the other indications of the lapse of time, in the development of this individual, are liable to the same exception.

See this solemn, slow-going Tortoise, shut up in his high-domed house of bones. It is the beautiful Testudo pardalis, well named from the plates being elegantly spotted and splashed with black on a pale-yellow ground, like the fur of the panther. This is a rather large individual, and the number of concentric lines on the plates of his armour, – or may I not rather say the tiles wherewith his house is roofed? – is commensurately great. You see what I mean. Each of the angular plates has a small nuclear lamina, not in the centre of the area, for the development has been one-sided, but on the highest part. This was the plate in its earliest form, or at least the earliest of which any trace is left; for probably there were others yet earlier and smaller, which, on account of their thinness, have been rubbed away in the travels of the old wanderer. From this nucleus, the plate has been successively enlarged, to correspond with the general growth of the animal, by repeated additions of new laminæ to the inferior surface; each new lamina being a little wider in every direction than that which preceded it, though not equally on all the margins; and thus the plates assumed the form of a very low cone, as you see, always preserving the specific outline, and manifesting the stages of increase, by the projecting edges of the successive laminæ, exactly as we saw lately in the scales of the fish.

Whether these laminæ are increased in an annual ratio, I am not sure, nor is it important. There are, I find, about forty-five concentric lines on one plate in this specimen, besides others which are evanescent. Hence it would be quite legitimate to infer that this Tortoise has passed through at least forty-five distinct periods of life, each of which has left a legible record of its existence.

And yet, this moment, in which we look at it, is the very first moment of its life; the concentric layers are evidences of processes that never occurred, except prochronically.

See yonder stately bird, nearly of the height of man, marching among the luxuriant musa-groves, and feeding on the succulent fruits. There is nothing very admirable in its coarse, black, hair-like plumage; but the rich hues of its naked neck, azure, purple, and scarlet, of the most vivid intensity, attract the gaze. The most remarkable feature in its physiognomy, is the singular, tall ridge of horn on its head, which, like the crested helmet of some mailed warrior, imparts an air of martial prowess to the bird, little in accordance with its peaceful habits.

This protuberance is altogether a development of age. The skull, in the youth of the Cassowary, was scarcely more elevated than that of a chicken; but in the lapse of years, the bony ridge, encased in horn, has gradually elevated itself to the height which it now possesses.

Here again we have a record of time, which is belied by the fact of the bird's recent creation.

What is the glorious train of the Peacock, all filled with eyes, but a false witness of the same kind? It leads us to infer that the bird is three years old at least, since before that period, the covert feathers, which are to form the splendid ornament of maturity, are not developed.

What are the lengthened tail-plumes of most refulgent blue, that adorn the Fork-tailed Humming-bird (Trochilus forficatus); what the gorgeously golden tail of the Resplendent Trogon; what the elegant lyre-shaped feathers of the Menura; what the lustrous plumage of the Birds of Paradise, – all of which have been but this hour created, – but so many testimonies, unworthy of confidence, to a past history?

But, further, every individual feather of this beautiful array of plumage concurs in bearing its unblushing witness to the same untruth. What says the physiologist, who is able to read off these autographic records?

"A little while ago, the tips of these feathers were seen each protruding from the extremity of a thick, opaque tube; and a little while before that, the tube itself, was a closed capsule, imbedded in a deep follicle of the skin. If you had then cut open the capsule, you would have found two concentric membranous tubes investing a highly vascular secreting pulp, abundantly supplied with nerves and blood-vessels through an orifice at the bottom of the capsule, and destined to form the substance of the coming feather. Indeed, you would have seen the soft, newly-formed barbs folded round the central organized matrix; and below, the incipient quill, filled with the living pulp-cells, and their blood-vessels, which were destined subsequently to wither up and collapse into the light skinny pith which you see in the perfectly matured feather. These are stages which each of these hundreds of feathers has passed through; and these are but a single generation, which have replaced former series that have been lost in the process of moulting, every one of which had in its turn passed through exactly corresponding stages, and so on backward, till we reach the first race of feathers, which were already partly developed when the chick burst forth from its imprisoning egg-shell."

So says the physiologist; but is he not most egregiously in error, since this is the day of these lovely beings' creation?

There goes the great Whale, the true Whalebone Whale, rolling and wallowing in the trough of the sea, and exposing his enormous black back like an island amidst the white foam, which he stirs up, "making the deep to be hoary." We will use our privilege and take a peep into his mouth, as we did just now into that of the Shark.

What a cavern! and all bristling with long black hair! Why it seems as if the hair grew on the wrong side of his head – on the inside instead of the outside!

Nay, what you call hair is really the Whale's teeth, or what represents teeth. This is the interior free fibrous margin of the baleen, which descends in long triangular plates from the upper jaw. There are about two hundred plates on each side, set face to face, with an interval between, and the edges outward. The inward edge runs off into those long hair-like filaments, which also extend from the slender tip. And the whole forms an effective sifting apparatus, by which the volume of sea-water, which the huge creature takes into his mouth in feeding, is drained of the sea-blubbers, the worms, the mollusks, and other small matters, which constitute the subsistence of this vast body.

Now each of these four hundred plates, some twelve feet in length, has grown from a minute sort of bud, in the upper jaw. Its base is hollow, resting on the formative pulp which is developed from the gum. The pulp is understood to be the immediate origin of the hairy fringe, while a dense vascular substance, seated between the bases of the plates, forms the plate itself. When the plate reaches a certain length, its diameter has become greatly attenuated, and its tip is constantly breaking away, leaving the hair projecting. There is therefore a continual disappearance of the substance of the plates at the tips, and a continual growth at the base to supply the deficiency; and even more, at least during the period of adolescence, because the actual dimensions of the plates have to be increased in the ratio of the growth of the whole animal.

Here, again, we read a record of past history. The Whale is known to be a long-lived animal; and a period of many years must have passed in bringing these plates of baleen to their present maturity. Yet the vast organism before us has been created in its vastness but to-day.

On the most prominent shelf of yonder precipice, a sharp buttress of naked limestone, stands an Ibex, guarding, like a watchful sentinel, the herd in the sheltered valley which own his leadership. The pair of noble horns, which are at once his defence and his pride, are marked throughout their ample curve with semi-rings, or knobs, on their anterior side. These afford us an infallible criterion of the animal's age.

We can count in this Ibex fourteen of such prominent bosses. Now the horn in these animals is not shed during life, but consists of a persistent sheath of horny substance, enveloping a bony core. Until full adult age, both the core of bone and the sheath of horn are continually growing; and in the spring, when there is an unusual augmentation of vital energy in the system, the increase is more than usually rapid. At this season, the new matter deposited in the corneous sheath accumulates in the form of one of these bosses, each of which is therefore produced at the interval of a year. As the first boss appears in the second year of the animal's age, we have but to add one to the number of the bosses on each horn, and we have the number of years which it has lived. The Ibex before us is just fifteen years old.

Yon Stag that is rubbing his branchy honours against a tree in the glade, – can we apply the same criterion to him? Not exactly: for the horns of all the Deer-tribe are of a different structure from those of the Capradæ. They are bones of great solidity, not invested with any corneous sheath, but clothed for a certain portion of their duration with a living vascular skin, and are shed every year during life and as constantly renewed.

Yet the bony horns of the Stag are no less sure a criterion of age, at least up to a certain period – than are those of the hollow-horned Ibex. In the spring of the second year of the Fawn, the horns first appear, seated on bony footstalks that spring from the frontal bone. The skin that covers these knobs begins to swell and to become turgid with blood supplied by enlarging arteries. Layers of bone are now deposited, particle by particle, on the footstalks, with surprising rapidity, producing the budding horns, which grow day by day, still covered by the skin, which grows also in a corresponding ratio. This goes on till a simple rod of bone is formed, without any branches. When this is complete, the course of the arteries that supplied the skin is cut off by fresh osseous particles deposited in a thick ring around the base. The enveloping skin then dies, and is soon rubbed off.

75.Bennett.
76.Rumphius.
77.The periodical formation of these septa in the progress of growth, is analogous to that of the projecting external plates in the Wendletrap, and of the rows of spines in the Murex; but those external processes consist of the opake calcareous layer of the shell, whilst the internal processes in the Nautilus consist of the nacreous layer, like the septa in the Turritella. Thus the embryo Nautilus at first inhabits a simple shell, like that of most univalve Mollusca, and manifests, according to the usual law, the general type at the early stage of its existence; although it soon begins, and apparently before having quitted the ovum, to take on the special form. – Prof. Owen's Lect. on Invertebrate Anim. p. 593, 2d Ed.
78.Woodward's "Manual of the Mollusca," p. 83.
79.Carpenter, on the Microscope, &c., p. 602.
80.Grant's Comp. Anat., 53.
81.See Jones's General Outline, p. 506. (Ed. 1841.)
82.Such is the common statement. Dr. Harlan, however, observes that "the rattle is cast annually [with the sloughed skin], and, consequently, no inference as to the age of the animal can be drawn from the number of pieces which compose the rattles." (Journ. Acad. Nat. Sci.; v. 368.) I confess this appears to me to be a non sequitur; for is it not quite possible that one may be added to the number annually, without involving the actual perpetuity of the preceding ones? It is evident that the increase must take place at some time or other, and it seems to me more likely to occur at the sloughing of the skin, that is, annually, than either oftener or seldomer.