Kitabı oku: «Digitalisierung verstehen», sayfa 3

Yazı tipi:

Vereinfacht gesagt, ist ein Algorithmus eine Abfolge logischer Anweisungen, die vorgeben, wie eine Aufgabe ausgeführt werden soll. Übersetzt in unsere analoge Lebenswelt bedeutet das: Nicht einmal eine Verkehrsampel funktioniert ohne Algorithmus, da dieser das exakte Schaltverhalten lenkt. Die Automatik in Fahrzeugen, das Online-Shopping oder jede Geldüberweisung werden von Algorithmen geregelt. Auch eine IKEA-Bauanleitung, YouTube-Videos mit Problemlösungsinstruktionen, die Wegbeschreibung für Ortsunkundige und nicht zuletzt Kuchenrezepte sind Algorithmen.

Rezepte der Computerwissenschaft

Computeralgorithmen benötigen jedoch exaktere Angaben als Backrezepte. So muss die Beschreibung jedes einzelnen Schritts eindeutig sein. Anweisungen in Kochrezepten sind nie eindeutig definiert und könnten von einem unerfahrenen Anwender falsch verstanden werden. Wann ist Butter schaumig? Wann ist der Eischnee steif?

Algorithmen sind obendrein begrenzt. Sie müssen als endlicher Text festgehalten sein und nach klar definierten Schritten zur Lösung führen. In Algorithmen kann es zum Beispiel auch Anweisungen für Wiederholungen geben, die nacheinander – aber nicht nebeneinander, wie beispielsweise beim Kuchenbacken – zu befolgen sind. Ein mathematischer Algorithmus sollte außerdem für jeden einzelnen Problemfall das richtige Ergebnis liefern.14

Es gibt unzählige verschiedene Methoden, Algorithmen zu klassifizieren. Eine einmalige oder einheitliche Einteilung gibt es nicht, da die Ziele, die es zu erreichen gilt, unterschiedlich sind. Maßgeblich ist, die Aufgaben der realen Welt, für die der Algorithmus herangezogen wird, zu erfüllen.

Wie Algorithmen ticken

Ein algorithmisches Sortierverfahren stellt z. B. die Priorisierung dar, die eine Rangliste von Suchergebnissen schafft. Google Search verwendet sie, um die Suche nach einer bestimmten Seite zu prognostizieren. Navigationssysteme arbeiten ebenfalls nach diesem Prinzip, wenn sie die schnellste Route ermitteln, und Netflix schlägt jene Filme vor, die man als nächste anschauen könnte. Auch der von IBM entwickelte Schachcomputer Deep Blue bestand grundsätzlich aus einem Priorisierungsmodus, der berechnete, welcher Zug die größten Siegeschancen brachte, als er 1996 den amtierenden Schachweltmeister Garri Kasparow in einer Partie und 1997 in einem vollständigen Wettkampf aus sechs Partien bezwang.

Ein Verfahren zur Einteilung von Objekten oder Situationen in einzelne Klassen beherrschen – wie der Name bereits verrät – Klassifizierungsalgorithmen. Diese Algorithmen erkennen und entfernen unangemessene Inhalte auf YouTube, beschriften Urlaubsfotos und sind auch imstande, handschriftliche Notizen einzuscannen und jedes Zeichen als einen eigenen Buchstaben zuzuordnen. Klassifizierungsalgorithmen sind auch für die Werbeanzeigen im Internet verantwortlich. Wenn die Timeline auf Facebook laufend Fotos von Traumreisezielen zeigt, steht mit höchster Wahrscheinlichkeit der Urlaub vor der Tür, ist die Reifeprüfung geschafft oder man hat einfach nur viele Urlaubsfotos von Freunden geliked. Auch Werbeanzeigen können durch solche Algorithmen jederzeit im Internet aufpoppen. Nachdem dieser Algorithmus Alter, Familie, Wohnort, Beruf, Vorlieben und Abneigungen sowie Freundschaften und soziales Umfeld kennt, ist seine Trefferquote hoch. Da solche Klassifikationsalgorithmen permanent im Hintergrund laufen, kennen sie den Nutzer in- und auswendig.

Anders der Kombinationsalgorithmus, der nach Beziehungen zwischen Einzelheiten, die er markiert, sucht. Das können Dinge, Persönlichkeitsmerkmale oder Einstellungen ebenso sein wie Interessen im Fall von Amazon. Dessen automatisierte Empfehlungen basieren auf einer ähnlichen Grundlage. Dabei kombiniert der Algorithmus die Interessen des Kunden mit jenen von früheren Käufern. Auch Dating-Algorithmen arbeiten nach diesem Prinzip und suchen nach Verbindungspunkten zwischen ihren Mitgliedern, um im Fall wie von Parship und anderen Agenturen passende Partner vorzuschlagen.

Für Spracherkennungsassistenten werden Filteralgorithmen, wie sie auch in sozialen Medien herangezogen werden, verwendet, die sich auf das Wesentliche fokussieren. Ihre Aufgabe ist es, das Signal von der Geräuschkulisse zu unterscheiden. So werden Spracherkennungsalgorithmen wie Alexa, Siri, Cortana und Co. trainiert, die die Stimme aus den Hintergrundgeräuschen herausfiltern, bevor sie entziffern, was gesagt wurde. Soziale Medien wie Facebook und Twitter wiederum filtern Geschichten heraus, um, passend zu den Interessen des Nutzers, einen personalisierten Feed15 zu erstellen.16

Es gibt darüber hinaus noch zahllose andere Kategorien, die den Arbeitsalltag von Informatikern zur Wissenschaft machen. Algorithmen werden meist in einer Kombination von unterschiedlichen Methoden erstellt und verwendet, wobei die vielfältigen Verknüpfungsvarianten eine beträchtliche Menge an Einsatzmöglichkeiten bieten.

Mit diesen regelbasierten Algorithmen, die in exakt vorgegebenen Einzelschritten vom Menschen bestimmt werden, lassen sich erstaunlich leistungsstarke Programme erstellen.

Selbstlernende Algorithmen

Eine andere Art von Algorithmen, die selbstlernenden Algorithmen, die in der Handhabung aufwendiger sind, finden dort Anwendung, wo die menschliche Logik zur Anleitung zu kurz greift und das Schreiben von Anweisungslisten zu keiner Lösung führen würde. Angelehnt an das Lernverhalten des menschlichen Gehirns oder jenes von entwickelten Tieren, lernt der Algorithmus durch die „künstliche“ Generierung von Wissen aus Erfahrung. Ähnlich wie bei der Abrichtung von Tieren wird ein klares Ziel definiert, das durch Belohnung für gutes und Ignorieren von schlechtem Verhalten samt möglichst vielen Wiederholungen erreicht werden soll.

Lernende Algorithmen haben den Vorteil, Objekte in Bildern wahrnehmen zu können, gesprochene Worte deuten und sie sogar in eine andere Sprache übersetzen zu können. Sie haben aber auch den Nachteil gegenüber regelbasierten Algorithmen, dass sich die „künstliche Intelligenz“ ihre Wege zur Lösung des Problems selbst sucht und für den menschlichen Beobachter somit nicht nachvollziehbar ist, was daher oftmals als Blackbox bezeichnet wird.

Ein künstliches System lernt aus Beispielen und kann diese nach Beendigung der Lernphase verallgemeinern. Beim sogenannten Maschinellen Lernen, dem Machine Learning, werden nicht einfach Beispiele auswendig gelernt, sondern Muster und Gesetzmäßigkeiten in den Lerndaten. Daher kann dieses System auch Unbekannte derselben Art beurteilen oder auch am Lernen unbekannter Daten durch Überanpassung, overfitting, scheitern.17 18

Die Anwendungsbereiche lernender Algorithmen – auch unter dem Überbegriff künstliche Intelligenz (KI) bekannt – werden immer zahlreicher, weil die Erfolge dieses Verfahrens laufend größer werden. Von automatisierten Diagnoseverfahren, Erkennen von Kreditkartenbetrug, Aktienmarktanalysen, Klassifikation von Nukleotidsequenzen, Sprach- und Texterkennung bis hin zu autonomen Systemen.

Big Data: Daten als Treibstoff des 21. Jahrhunderts

Wenn auch die Bezeichnung „Big Data“ eine Begrifflichkeit der neuen digitalen Welt ist, so ist die Praxis des Datensammelns eine durchaus lang geübte. Schon in der Antike erstellten Regierungen erste Statistiken. Könige oder Kaiser wollten wissen, wie viel Geld die nächsten Steuererhebungen einbringen würden und wie viele Soldaten das Land im Kriegsfall stellen könne. Die ersten Beweise für solche Erhebungen lassen sich anhand von Tonscherben auf 3800 v. Chr. datieren. Im alten Babylon wurden vor fast 6.000 Jahren Volkszählungen durchgeführt und im antiken Griechenland fanden sich überdies laufende Aufzeichnungen betreffend Getreideeinfuhr oder Verzeichnisse zollpflichtiger Waren. Im römischen Reich wurden ab dem 6. Jahrhundert v. Chr. alle fünf Jahre Bevölkerungserhebungen durchgeführt.19

Daten verdrängen im 21. Jahrhundert in der Tat das Erdöl als Wirtschaftsfaktor. Sie sind universelle Antriebskraft für nahezu alle Technologien der Digitalisierung und sie machen jene Personen und Institutionen reich, die sie besitzen, mit ihnen Handel treiben oder sie auswerten. Die gesamte künstliche Intelligenz (KI) basiert durch den technologischen Fortschritt auf Big Data, befeuert mittels der neuartigen Methoden des Machine Learnings.

Big Data als allgemeingültige Definition wird man vergeblich suchen. Gleichwohl das Erfassen und Speichern großer Mengen an Informationen zur Analyse in den frühen 2000er-Jahren an Bedeutung gewann, ist eine gängige Definition von Big Data nach wie vor jene, die Doug Laney, Analyst des US-amerikanischen Marktforschungsunternehmens Gartner, bereits 2001 mit seinem 3-V-Modell folgendermaßen erklärt hat: Volume, Velocity und Variety.

Volume steht für die exorbitant wachsende Datenmenge, die aufgrund der technologischen Möglichkeiten gewonnen, gespeichert und verarbeitet wird. Die Prognose zum Volumen der jährlich weltweit generierten digitalen Datenmenge für das Jahr 2025 beläuft sich auf 175 Zettabyte20 – im Vergleich zu 33 Zettabyte im Jahr 2018.21 Gesammelt wird aus den unterschiedlichsten Quellen von sozialen Medien, der öffentlichen Verwaltung, über geschäftliche Transaktionen bis zum automatisierten Informationsaustausch in der Machine-to-Machine-Kommunikation.

Für die Geschwindigkeit, mit der sich Daten generieren, auswerten und nahezu in Echtzeit verarbeiten lassen, steht Velocity. Jeder Klick, jeder View und jedes Einloggen im Internet wird mit Sicherheit irgendwo erfasst. Ein großer „Datensammler“ dabei ist die Suchmaschine Google. Das Internet hat 4,54 Milliarden Nutzer.22 92,81 Prozent aller Internet-Nutzer suchen über Google. Bereits 2015 sammelte Google mindestens 20 Petabyte, das sind 2015 Byte, an Daten. Wollten wir 20 Petabyte auf USB-Sticks von je 4 Gigabyte speichern, bräuchten wir fünf Millionen Stück.

Für die Vielfalt der Datentypen und Datenquellen von Daten aus herkömmlichen Datenbanken bis hin zu unstrukturierten Textdokumenten, E-Mail, Video, Audio, Börsentickerdaten und Finanztransaktionen steht Variety. Diese Daten, die weltweit zu 80 Prozent vorkommen, sind unstrukturiert und weisen auf den ersten Blick keinerlei Zusammenhänge auf. Durch Big-Data-Suchalgorithmen können diese Daten strukturiert eingeordnet und auf Zusammenhänge untersucht werden. Neben herkömmlichen Datensätzen zählen auch Bilder, Videos und Sprachaufzeichnungen dazu.23

Dieses Grundmodell wird häufig durch ein viertes und fünftes V erweitert: Veracity steht für die Wahrhaftigkeit und Glaubwürdigkeit von Daten und Value für den unternehmerischen Mehrwert. Mittlerweile haben viele Unternehmen eigene Datenplattformen mit prall gefüllten Datenpools aufgebaut und viel Geld in die Infrastruktur investiert, um Business Value zu generieren.

„Fifth Generation“: 5G steht in den Startlöchern

Während die derzeit gebräuchlichste Technologie 4G für die private Nutzung weiterhin optimiert wird, ist die fünfte Generation drahtloser Breitbandtechnologie vor allem für die Industrie durch die zunehmende Vernetzung von intelligenten Maschinen interessant.

Unternehmen wollen mit 5G eigene Mobilfunknetze auf ihren Fabriksgeländen aufbauen. Autonom fahrende Autos brauchen den neuen Mobilfunkstandard und auch in der Telemedizin oder in der Landwirtschaft soll diese Technologie künftig eine wichtige Rolle spielen. Die Produktivität von Österreichs Wirtschaft könnte mit einer erstklassigen digitalen Infrastruktur, bei der die 5G-Technologie eine Schlüsselrolle spielt, um durchschnittlich 15,2 Prozent oder 58,7 Milliarden Euro gesteigert werden, wie eine Modellrechnung des Österreichischen Infrastrukturreports 2020 verdeutlicht. Das größte industrielle Forschungsnetz, ein weltweit einmaliges Ökosystem zur Erforschung und Entwicklung von 5G-Technologien für die Industrie 4.0, entsteht auf einem Campus in Aachen. Gemeinsam mit Projektpartnern sollen dort unter der Leitung des Fraunhofer-Instituts für Produktionstechnologie (IPT) künftig Anwendungen und Lösungen für die vernetzte Produktion über den neuen Mobilfunkstandard entwickelt und erprobt werden.

Dennoch hinkt Europa beim Ausbau der 5G-Infrastruktur gegenüber Nordamerika, Nordostasien und den Golf-Staaten stark hinterher, einzig die Schweiz hat das erste 5G-Netz in Europa aufgebaut und ist weltweit einer der Vorreiter der neuen Mobilfunk-Generation. In Nordostasien mit China und Südkorea waren Ende 2020 bereits 9 Prozent aller Mobilfunkverträge auf 5G umgestellt worden, während es in Westeuropa lediglich 1 Prozent war, so das Ergebnis des aktuellen Ericsson Mobility Report, der im Juni 2021 in Stockholm veröffentlicht wurde.

Bis zum Jahr 2026 soll das dynamische Wachstum vor allem von Nordamerika ausgehen, wo der 5G-Anteil von derzeit über 4 Prozent auf 84 Prozent steigen soll. In Nordostasien würden dagegen bis 2026 nur zwei Drittel, das wären 65 Prozent, aller Mobilfunkverträge 5G nutzen. In absoluten Zahlen liegen die Asiaten mit 1,4 Milliarden 5G-Verträgen allerdings weit voran. Die Schweiz hat neben Südkorea und einzelnen Städten in den USA 5G bereits in Betrieb genommen. In Österreich dürfte 5G frühestens 2023 für den Massenmarkt relevant sein, vermuten Experten.

Bedenken aus der Bevölkerung bezüglich der gesundheitlichen Risiken durch höhere elektromagnetische Strahlung sind nicht zu überhören. Berichte über tote Vögel, die scharenweise von Bäumen fallen, kursieren in den sozialen Medien ebenso wie laserartige Strahlen, die Verbrennungen an der menschlichen Haut verursachen sollen. „Es gibt keine nachgewiesene Kausalität, dass diese Art von Strahlung bei der Intensität, mit der sie eingesetzt werden soll, gesundheitsgefährdend ist. Da es noch einige nicht restlos geklärte Fragen gibt, ist wissenschaftlich gesehen ein Restrisiko vorhanden“, so Gernot Schmid von den Seibersdorf Laboratories.

Eines ist aber sicher: Der superschnelle Mobilfunkstandard 5G wird den Stromverbrauch von Rechenzentren kräftig in die Höhe treiben. Nach einer Studie für den Stromversorger E.ON soll der ohnehin stark wachsende Energiebedarf der Rechenzentren durch 5G ab sofort bis 2025 um 3,8 Milliarden Kilowattstunden weltweit steigen. Das wäre genug Strom, um Städte wie Paris oder Rom ein Jahr lang zu versorgen. Auf absehbare Zeit werden diese Mengen an erneuerbarer Energie nicht zu liefern sein, was den Strompreis gewaltig in die Höhe treiben wird. Klimaneutralität und sauberer Strom werden nicht zum Nulltarif zu bekommen sein und sind auch als Umverteilungsinstrument ungeeignet.

Das Netz der Zukunft: 6G

Während Industrie und Endverbraucher sehnsüchtig auf den schnellen Datentransfer durch 5G warten, arbeitet die Forschung bereits auf Hochtouren an der nächsten Mobilfunkgeneration von drahtlosen Echtzeit-Kommunikationsverbindungen. Sixth Generation Wireless, also 6G, heißt der Nachfolger der 5G-Mobilfunktechnologie. 6G soll aufgrund zahlreicher kleiner Funkzellen in der Lage sein, eine deutlich höhere Anzahl von Daten mit kürzeren Verzögerungszeiten zu übertragen und noch mehr Nutzer an ihren Endgeräten bedienen. Künstliche Intelligenz (KI) wird hierbei eine wesentliche Rolle spielen.

Durch die kurzen Wegstrecken lassen sich große Datenraten mit minimalem Energieaufwand und geringer elektromagnetischer Immission übertragen. Das macht Signalübertragungen im Terahertz-Bereich möglich, die sich im elektromagnetischen Spektrum zwischen Mikrowellen und Infrarotstrahlung bewegen.

Moderne 6G-Kommunikationssysteme erlauben einen sichereren, kostengünstigeren, zuverlässigeren und umweltfreundlicheren Betrieb vieler technischer Systeme. Außerdem vermindern sie den Energieverbrauch und erhöhen die Wettbewerbsfähigkeit im Sinne der im Europäischen „Green Deal“ verankerten Ziele von verbesserter Ressourceneffizienz und geringeren Treibhausgas-Emissionen. So ist es in Produktionsprozessen der Zukunft erforderlich, eine rasche und zuverlässige Interaktion zwischen Robotern sowie zwischen „Mensch und Roboter“ zu gewährleisten.

Auch bei öffentlichen Verkehrsmitteln, die zur CO2-Reduzierung beitragen, kann 6G teure drahtgebundene Sicherheitssysteme z. B. im Bahnverkehr durch kostengünstigere drahtlose Kommunikationsverbindungen ersetzen. Der autonome Betrieb von Zügen kann mithilfe der neuen 6G-Kommunikationssysteme sicher realisiert werden. Das reduziert den Individualverkehr und trägt durch die Neubelebung bisher unrentabler Nebenbahnen zu einer Steigerung der öffentlichen Mobilität in ländlichen Gebieten bei.

Total vernetzt: Internet der Dinge (IoT)

No one can do I(o)T alone – wie es der deutsche Elektronik-Multi Bosch bewirbt – zeigt eindeutig den Weg, den die digitalisierte Gesellschaft eingeschlagen hat: Der Trend zur Vernetzung ist nicht mehr zu stoppen. Die Bezeichnung „Internet of Things“, abgekürzt IoT, wurde vom britischen Technologie-Pionier Kevin Ashton erstmals 1999 verwendet und seitdem tüfteln Wissenschaftler an der Umsetzung seiner Vision eines „allgegenwärtigen Computereinsatzes“.

Das „Internet der Dinge“, auch als „Allesnetz“24 bekannt, steht einerseits für die zunehmende Vernetzung zwischen „intelligenten“ Gegenständen untereinander, die sich per M2M (Machine-to-Machine) gegenseitig austauschen. Andererseits ist jedes „eindeutig identifizierbare physische Objekt“ über eine eigene Internetadresse vom Menschen abrufbar. Mittels künstlicher Intelligenz können Geräte miteinander kommunizieren und automatisierte Prozesse einleiten. Hier liegt der wesentliche Unterschied zum herkömmlichen Arbeiten mit einem Computer, was den Menschen zunehmend überflüssig macht.

Diese autonom arbeitenden „Things“ generieren Handynutzungsdaten, Messdaten oder Ortungsdaten im großen Stil, um sie mit Sensoren, Robotern oder Programmen automatisch zu speichern.25 Weltweit beträgt das Marktvolumen von IoT-Anwendungen derzeit 635 Mrd. US-Dollar (555,9 Mrd. Euro) und wird sich auf geschätzte 2,3 Billionen Dollar im Jahr 2030 erhöhen. In Österreich soll sich der Markt bis zum Jahr 2025 auf 11 Mrd. Euro fast verdreifachen und bis 2030 könnten es bereits 16 Mrd. Euro sein.26 In der gesamten DACH-Region wird das IoT-Marktvolumen aktuell auf 35,9 Mrd. Euro geschätzt. Davon entfallen 24,1 Mrd. auf Deutschland, 7,6 Mrd. auf die Schweiz und 4,2 Mrd. Euro auf den österreichischen Markt.27

Bis 2024 werden weltweit 35 Milliarden Endgeräte vernetzt sein und im Jahr 2030 möglicherweise sogar 50 Milliarden.28 Das wird die Art und Weise, wie Menschen leben und arbeiten, grundlegend verändern. Ziel dieser Vision ist es, dass jeder reale Gegenstand als Teil des IoT in der Lage sein soll, seine Zustandsinformationen laufend im Internet zur Verfügung zu stellen, wie das in der Automobilbranche schon heute teilweise der Fall ist. Ein durchschnittlicher Pkw verfügt über rund 200 Sensoren, die das Einparken sowie die Überwachung des toten Winkels möglich machen oder als automatisches Notrufsystem oder zur Kontrolle des Reifendrucks fungieren. Die Anwendungsfelder des IoT sind vielfältig, weil die Sensoren und Komponenten zur Datenübertragung per Funk in vernetzte Ampeln oder selbstfahrende Autos eingebaut werden können. Ebenso sind sie in der Unterhaltungselektronik oder Warenwirtschaft vorstellbar, können in Möbeln oder Lampen stecken oder in der Medizin mittels Mikro-Implantaten das Blut nach Krebszellen durchsuchen bzw. für die korrekte Verabreichung von Medikamenten samt deren Dosierung sorgen. In Smarthomes können intelligente Stromzähler, sogenannte Smart Meter, die Energieeffizienz verbessern, um den Stromverbrauch und die Stromkosten zu senken. Auch Hemden könnten der Waschmaschine mitteilen, mit wie viel Grad sie gewaschen werden möchten. Zukunftsforscher zweifeln allerdings daran, dass alles, was machbar wäre, auch zur Anwendung kommen wird. Die Vision des Kühlschranks, der seinen Benützer umgehend informiert, sobald bestimmte Lebensmittel nicht mehr vorrätig sind, und von sich aus welche bestellt, könnte daran scheitern, dass sich die Menschen ihr Einkaufsverhalten nicht vorschreiben lassen wollen. Auch Schlüssel oder Wertgegenstände, die man verloren hat, übers Internet zu lokalisieren, ist ein zweischneidiges Schwert, da Personen sich permanent überwacht fühlen würden.

Derartige Zustandsinformationen sind aber im Industriesektor bei Prozessen in Fabriken und Produktionseinrichtungen von großer Bedeutung. Techniker können vorausschauend über den Betrieb von Motor und Material informiert werden und entsprechend eingreifen, um Schäden oder Leerläufen durch entsprechende Wartung bzw. den Austausch einer Komponente vorzubeugen. Dabei sind die Geräte mit intelligenten Sensoren ausgestattet, untereinander vernetzt und ständig im Internet präsent. So lassen sich Produktionsabläufe besser planen, sie sind zudem sicherer und gestalten sich kosten- und zeiteffizienter, sodass insgesamt ein nachhaltigeres Qualitätsmanagement gewährleistet werden kann. Diese Vernetzung soll es ermöglichen, eine gesamte Wertschöpfungskette zu optimieren. Dabei sind Sicherheitslücken jedoch zu vermeiden, die bei komplexen Systemen bedacht werden müssen – siehe Kapitel Bedrohter Cyberraum: Internetkriminalität – „Sicherheitslücken den Kampf angesagt“.

Ücretsiz ön izlemeyi tamamladınız.

Türler ve etiketler
Yaş sınırı:
0+
Hacim:
241 s. 3 illüstrasyon
ISBN:
9783710605680
Telif hakkı:
Bookwire
İndirme biçimi:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

Bu kitabı okuyanlar şunları da okudu