Sadece LitRes`te okuyun

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «A History of Inventions, Discoveries, and Origins, Volume II (of 2)», sayfa 10

Yazı tipi:

Figures or puppets, which appear to move of themselves, were employed formerly to work miracles; but they could hardly be used for that purpose at present in any catholic country of Europe, though they still serve to amuse the vulgar. Among these are the marionettes330, as they are called, the different parts of which are put in motion imperceptibly by a thread. Of a still more ingenious construction are those which are moved by the turning of a cylinder, as is the case in the machines with which some of the old miners in Germany earn a livelihood; but the most ingenious of all are those which are kept in continual movement for a certain time, by the help of wheels with a weight or spring. The latter are called automata; and, when they represent human figures, androides. Under the former general name are comprehended our watches, the most useful of all, and also jacks331, with many others. The latter appellation is given to small puppets, which, when their inner works have been wound up, run upon the table or pavement, and as they advance move their head, eyes, and hands. They have been exhibited sometimes under the name of courrante Margarethe, which gave rise perhaps to the word marionette.

The proper marionettes are very old. They were common among the Greeks, and from them they were brought to the Romans. They were known by the name of neurospasta, and were much used at their shows. Aristotle speaks of some which moved their head, eyes, hands and limbs in a very natural manner332. They are mentioned with equal precision by Galen, Xenophon, Antoninus, Horace, Gellius, and others. To these belong the phalli, which were carried round during the festivals of Osiris and Bacchus, and of which one member only, that properly meant by the name, and which was almost as large as the whole body, moved upon certain threads being pulled333. Count Caylus has given an engraving of the body of a small puppet, made of ivory or bone; but he requires too much when he desires us to consider that fragment, merely on his word, as a piece of Greek or Roman antiquity. He at least ought to have informed us where it was found, and by what means he procured it. In regard to such articles, it is as easy to deceive as to be led into an error; and objects of bone are certainly of no great duration334.

The question concerning the antiquity of automata, properly so called, which are moved by wheels, weights and springs, I shall leave to those who have read the works of the ancient mathematicians, and who may be desirous of writing on the history of mechanics. As far as I know, the ancients were not acquainted with the art of making them, unless some propositions of Ctesibius, mentioned by Vitruvius, allude to that subject. When clocks were brought to perfection, some artists added to them figures, which at the time of striking performed various movements; and as they succeeded in these, some attempted to make, detached from clocks, single figures, which either moved certain limbs, or advanced forward and ran. In the middle of the sixteenth century, when Hans Bullmann335, a padlock-maker at Nuremberg, constructed figures of men and women which moved backwards and forwards by clock-work, beat a drum, and played on the lute according to musical time, they excited universal astonishment as a new invention. It was about the same period that watches came into use. The accounts however which speak of much older automata deserve to be examined with more attention.

The most ancient of all are undoubtedly the tripods constructed by Vulcan336, which being furnished with wheels, advanced forwards to be used, and again returned to their places. But what was impossible to the gods of Homer? An unbeliever might conjecture that these tripods, which are mentioned also by Aristotle337, and which perhaps were only a kind of small tables or dumb-waiters, had wheels so contrived that they could be put in motion and driven to a distance on the smallest impulse, like the fire-pans in our country beer-houses, at which the boors light their pipes.

That Dædalus made statues which could not only walk, but which it was necessary to tie, in order that they might not move, is related by Plato338, Aristotle, and others. The latter speaks of a wooden Venus, and remarks that the secret of its motion consisted in quicksilver having been poured into it. What the author here means I cannot comprehend; but I do not imagine that this Venus threw itself topsy-turvy backwards, like the Chinese puppets. However this may be, it is astonishing that the Chinese should have fallen upon the invention of giving motion to puppets by means of quicksilver, and in so ingenious a manner, that Muschenbroek339 thought it worth his while to describe their whole construction, and to illustrate it by figures. But before this method was known in Europe, Kircher had an idea of putting a small waggon in motion by adding to it a pipe filled with quicksilver, and heating it with a candle placed below it340. The account of Aristotle is more mysterious, for he does not inform us how the quicksilver acted.

Callistratus, another writer, who was the tutor of Demosthenes, gives us to understand that the statues of Dædalus were made to move by the mechanical powers341. But what has been asserted by Palæphatus, and by Gedoyn342, Banier, Goguet, and others among the moderns, is most probable. The first statues of the Greeks were imitations of those of the Egyptians, for the most part clumsy figures, with their eyes shut, their arms hanging down close to the body on each side, and their feet joined together. Those made by Dædalus had their eyes open, as well as their feet and hands free; and the artist gave them such a posture, that they seemed either reclining, or appeared as if ready to walk or to run. As Anacreon343, struck with wonder, exclaimed when he saw a waxen image of his favourite object, “Begone, wax, thou wilt soon speak!” the astonished Greeks in like manner cried out, when they beheld the statues of Dædalus, “They will soon walk.” The next generation affirmed that they really walked; and their posterity, adding still to what was told them, asserted that they would have run had they not been bound.

Equally imperfect is the account given of the wooden pigeon constructed by Archytas of Tarentum. We are informed that it flew; but when it had once settled, it could not again take flight. The latter is not incredible; but even if we allow that aërostatic machines were then known, it is impossible to believe the former. At present one cannot determine with any probability, what piece of mechanism gave rise to this relation344. The head of Albertus Magnus, which is said not only to have moved, but to have spoken, is too little known for any opinion to be formed concerning it. The construction of it must have been very ingenious and complex, if it be true that he was employed upon it thirty years345.

In the fourteenth and following centuries, automata, as I have said, were frequently made. Among these was the iron fly of John Müller or Molitor, or, as he is sometimes called, Regiomontanus, which is said to have flown about; and his artificial eagle, which flew to meet the Emperor Maximilian on his arrival at Nuremberg, June the 7th, 1470. None of the contemporary writers, however, though they often speak of this very learned man, make the least mention of these pieces of mechanism; and it is probable that the whole tale originated with Peter Ramus346, who never was at Nuremberg till the year 1571. J. W. Baier347 endeavours to prove that the above-mentioned fly, moved by wheel-work, leaped about upon a table; and that the eagle perched upon the town-gate, stretched out its wings on the emperor’s approach, and saluted him by an inclination of its body. We know that Charles V., after his abdication, amused himself during the latter period of his life with automata of various kinds348.

The most ingenious, or at least the most celebrated automata, were those made by Vaucanson, which he exhibited publicly at Paris, for the first time, in 1738. One of them, which represented a flute-player sitting, performed twelve tunes, and, as we are assured, by wind issuing from its mouth into a German-flute, the holes of which it opened and shut with its fingers. The second was a standing figure, which in the like manner played on the Provençal shepherd’s pipe, held in its left hand, and with the right beat upon a drum or tambour de Basque. The third was a duck, of the natural size, which moved its wings, exhibited all the gestures of that animal, quacked like a duck, drank water, ate corn, and then after a little time let drop behind it something that resembled the excrement of a duck349. These pieces must have been often imitated. I saw some of the like kind in the year 1764, at the palace of Zarsko-Selo, near Petersburg, and was told that they had been purchased from Vaucanson350. As far as I can remember, the tambourin was damaged. I saw there also a regiment of soldiers, which went through their exercise, moved by wheel-work351.

In the year 1752, one Du Moulin, a silversmith, travelled about through Germany with automata like those of Vaucanson. In 1754, he wished to dispose of them to the margrave of Bayreuth; but he was obliged to pawn them in Nuremberg, at the house of Pfluger, who offered to sell them for 3000 florins, the sum lent upon them. They were afterwards purchased by counsellor Beireis, at Helmstadt, who kindly showed them to me. It is much to be regretted that the machinery of them is greatly deranged; the flute-player emits only some very faint tones; but the duck eats, drinks, and moves still. The ribs, which are of wire, had been covered with duck’s feathers, so as to imitate nature; and as these are now lost, one can see better the interior construction; respecting which I shall only observe, that the motion is communicated by means of a cylinder and fine chains, like that of a watch, all proceeding through the feet of the duck, which are of the usual size. Nicolai352 says that Du Moulin came to Petersburg in 1755, and died at Moscow in 1765. It is probable that he made the automata which I saw in Russia. Those which he left behind him at Nuremberg seem either not to have been completed, or to have been designedly spoiled by him; for they appeared to have defects which could not be ascribed to any accident. M. Beireis however has begun to cause them to be repaired.

Of all these automata, the duck I confess appeared to me the most ingenious; but I can prove that like pieces of mechanism were made before the time of Vaucanson. We are told by Labat353, that the French general De Gennes, who, about the year 1688, defended the colony of St. Christopher against the English, constructed a peacock which could walk about, pick up from the ground corn thrown before it, digest it, according to appearance, and afterwards drop something that resembled excrement. This man was of an ancient noble family in Brittany, which had however been so reduced, that the father carried on a handicraft. The son became acquainted with the marquis de Vivonne, who, on account of his promising talents, bred him to the sea. He rose to be commander of a vessel, conducted a squadron to the Straits of Magellan, where it was intended to form a colony, and obtained in Cayenne a tract of land, which he got erected into a county, under the name of Oyac. He invented machines of various kinds useful in navigation and gunnery, and, as we are told, constructed clocks that moved without weights or springs.

The flute-player also of Vaucanson was not the first of its kind. In the beginning of the sixteenth century, the anonymous author of that well-known poem Zodiacus Vitæ, saw at Rome a figure made in the like manner by a potter. It is much to be regretted that no account is given of its construction.

 
Vidi ego dum Romæ, decimo regnante Leone,
Essem, opus a figulo factum, juvenisque figuram,
Efflantem angusto validum ventum oris hiatu354.
 

I shall here beg leave to say a few words respecting an object of juggling, which, however old it may be, still excites astonishment, and has often imposed upon the credulity of men of learning355: I mean those speaking machines, which, according to appearance, answer various questions proposed to them, sometimes in different languages, sing, and even blow a huntsman’s horn. The figure, or only a head, is often placed upon a box, the forepart of which, for the better deception, is filled with a pair of bellows, a sounding-board, cylinder, and pipes, supposed to represent the organs of speech. At other times the machine is only like a peruke-maker’s block, hung round with a Turkish dress, furnished with a pair of arms, and placed before a table, and sometimes the puppet stands upon the table, or against a wall. The sounds are heard through a speaking-trumpet, which the figure holds in its mouth.

Many jugglers are so impudent as to assert that the voice does not proceed from a man, but is produced by machinery, in the same manner as the music of an organ. Some, like the last whom I saw, are more modest or timorous, and give evasive answers to the questions asked them respecting the cause of the voice, with as much art as those who exhibit with balls and cups. Concerning these speaking machines, however, different opinions are entertained. Some affirm that the voice issues from the machine; others, that the juggler answers himself, by speaking as ventriloquists do, or by having the power to alter his voice; and some believe that the answers are given by a man somewhere concealed. The violence with which these opinions are maintained exposes the juggler often to the danger of losing his life; for, when the illusion is detected, the populace, who in part suffer themselves willingly to be deceived, and who even pay the juggler for his deception, imagine that they have a right to avenge themselves for being imposed on. The machines are sometimes broken; and the owners of them are harshly treated as impostors. For my part, I do not see why a juggler, with a speaking machine, is a more culpable impostor than he who pretends to breathe out flames and to swallow boiling oil, or to make puppets speak, as in the Chinese shadows. The spectators pay for the pleasure which they receive from a well-concealed deception, and with greater satisfaction the more difficult it is for them to discover it. But the person who speaks or sings through a puppet, is so well hid, that people of considerable penetration have imagined that such concealment was impossible. At present this art is well known.

Either a child or a woman is concealed in the juggler’s box; or some person, placed in a neighbouring apartment, speaks into the end of a pipe which proceeds through the wall to the puppet, and which conveys the answers to the spectators. The juggler gives every necessary assistance to the person by signs previously agreed on. I was once shown, in company with M. Stock, upon promising secrecy, the assistant in another apartment, standing before the pipe, with a card in his hand on which the signs were marked; and he had been brought into the house so privately that the landlady was ignorant of the circumstance. The juggler, however, acknowledged that he did not exhibit without fear; and that he would not venture to stay long at a place like Göttingen, or to return with his Turks, though the populace were so civil as to permit him to depart peaceably with what he had gained.

The invention of causing statues to speak by this method seems so simple, that one can scarcely help conjecturing that it was employed in the earliest periods to support superstition; and many have imagined that the greater part of the oracles spoke in the same manner356. This, however, is false, as has been proved by the Jesuit Baltus, and the anonymous author of a Reply to Fontenelle’s History of Oracles357. It appears that the pagan priests, like our jugglers, were afraid that their deceptions, if long practised, might be discovered. They considered it therefore as more secure to deliver the answers themselves; or cause them to be delivered by women instructed for that purpose, or by writing, or by any other means. We read, nevertheless, that idols358 and the images of saints once spoke; for at present the latter will not venture to open their mouths. If their votaries ever really heard a voice proceed from the statue, it may have been produced in the before-mentioned manner.

Whether the head of Orpheus spoke in the island of Lesbos, or, what is more probable, the answers were conveyed to it by the priests, as was the case with the tripod at Delphi, cannot with certainty be determined. That the impostor Alexander, however, caused his Æsculapius to speak in this manner, is expressly related by Lucian359. He took, says that author, instead of a pipe, the gullet of a crane, and transmitted the voice through it to the mouth of the statue. In the fourth century, when bishop Theophilus broke to pieces the statues at Alexandria, he found some which were hollow, and placed in such a manner against a wall that a priest could slip unperceived behind them, and speak to the ignorant populace through their mouths360. I am acquainted with a passage which seems to imply that Cassiodorus, who, it is well known, constructed various pieces of mechanism, made also speaking machines; but I must confess that I do not think I understand the words perfectly361.

That people ventured more than a hundred years ago to exhibit speaking machines for money, has been proved by Reitz in his annotations to Lucian, where he produces the instance of one Thomas Irson, an Englishman, whom he himself knew, and whose art excited much wonder in king Charles II. and his whole court. When the astonishment, however, became general, one of the pages discovered, in the adjoining chamber, a popish priest who answered in the same language, through a pipe, the questions proposed to the wooden head by whispering into its ear. This deception Irson often related himself362.

I shall now add only a few observations respecting the Chinese shadows, which I have occasionally mentioned before. This ingenious amusement consists in moving, by pegs fastened to them, small figures cut out of pasteboard, the joints of which are all pliable, behind a piece of fine painted gauze placed before an opening in a curtain, in such a manner as to exhibit various scenes, according to pleasure; while the opening covered with gauze is illuminated, towards the apartment where the spectators sit, by means of light reflected back from a mirror; so that the shadows of the pegs are concealed. When it is requisite to cause a figure to perform a variety of movements, it is necessary to have several persons, who must be exceedingly expert. When a snake is to be represented gliding, the figure, which consists of delicate rings, must be directed at least by three assistants.

This amusement, which one can hardly see the first time without pleasure, is really a Chinese invention. Many years ago, I have seen Chinese boxes on which such moveable figures were apparent only when the box was held against the light. In China, these shadows are used at the well-known feast of lanterns; and a description of them may be found in the works of some travellers. That they were common also in Egypt, we are informed by Prosper Alpinus363, who admired them much; but he was not able to discover the method by which they were produced, as it was kept a secret. I was told by an Italian, who exhibited them at Göttingen some years ago, that they were first imitated, from the Chinese, at Bologna.

ARTIFICIAL ICE. COOLING LIQUORS

The art of preserving snow for cooling liquors during the summer, in warm countries, was known in the earliest ages. This practice is mentioned by Solomon364, and proofs of it are so numerous in the works of the Greeks and the Romans, that it is unnecessary for me to quote them, especially as they have been collected by others365. How the repositories for keeping it were constructed, we are not expressly told; but what I know on the subject I shall here lay before the reader.

That the snow was preserved in pits or trenches, is asserted by many366. When Alexander the Great besieged the city of Petra, he caused thirty trenches to be dug and filled with snow, which was covered with oak branches, and which kept in that manner for a long time367. Plutarch says that a covering of chaff and coarse cloth is sufficient368; and at present a like method is pursued in Portugal. Where the snow has been collected in a deep gulf, some grass or green sods, covered with dung from the sheep-pens, is thrown over it; and under these it is so well preserved, that the whole summer through it is sent the distance of sixty Spanish miles to Lisbon369.

When the ancients therefore wished to have cooling liquors, they either drank the melted snow or put some of it in their wine, or they placed jars filled with wine in the snow, and suffered it to cool there as long as they thought proper. It appears that in these trenches it could not remain long clean; on the contrary, it was generally so full of chaff, that the snow-water was somewhat coloured with it, and had a taste of it, and for this reason it was necessary to strain either it or the wine that had been cooled by it370.

That ice also was preserved for the like purpose, is probable from the testimony of various authors371; but it appears not to have been used so much in warm countries as in the northern. Even at present snow is employed in Italy, Spain, and Portugal; but in Persia, ice372. I have never anywhere found an account of Grecian or Roman ice-houses. By the writers on agriculture they are not mentioned.

Mankind however soon conceived the idea of cooling water without snow or ice, from having remarked that it became cold more speedily when it had been previously boiled, or at least warmed, and then put in a vessel among snow, or in a place much exposed to the air. Pliny seems to give this as an invention of Nero373; and a jocular expression in Suetonius374 makes it at any rate probable that he was fond of water cooled by this method; but it appears to be much older. It seems to have been known even to Hippocrates: at least Galen375 believes so. And Aristotle376 was undoubtedly acquainted with it; for he says that some were accustomed, when they wished water to become soon cold, to place it first in the sun and suffer it to grow warm. He relates also that, the fishermen near the Black Sea poured boiling water over the reeds which they used in fishing on the ice to cause them to freeze sooner. Galen377 on this subject is still more precise. He informs us that the above practice was not so much used in Italy and Greece, where snow could be procured, as in Egypt and other warm countries, where neither snow nor cool springs were to be found. The water after it had been boiled was put into earthen vessels or jars, and exposed in the evening on the upper part of the house to the night air. In the morning these vessels were put into the earth (perhaps in a pit), moistened on the outside with water, and then bound round with fresh or green plants, by which means the water could be preserved cool throughout the whole day. Athenæus378, who gives a like account from a book of Protagorides, remarks, that the pitchers filled with water, which had become warm by standing all day long in the sun, were kept continually wet during the night, by servants destined to that office, and in the morning were bound round with straw. In the island of Cimolus379, water which had become warm in the day-time was put into earthen jars, and deposited in a cool cellar, where it grew as cold as snow. It was generally believed therefore, that water which had been warmed or boiled, was soonest cooled, as well as acquired a greater degree of refrigeration; and on this account boiled water is mentioned so often in the works of the ancients380.

The same opinion prevails at present in the southern countries of Asia, and people there still let their water boil before they expose it to the air to cool381. The experiments however which have been made on this subject by philosophers, have proved very different in the result. When one indeed places boiling and cold water, all other circumstances being equal, in frosty air, the latter will become ice before the former has cooled; but when one exposes to the cold, water that has been boiled, and unboiled water of equal temperatures, the former will be converted into ice somewhat sooner.

The experiments made by Mariotte382, Perrault383, the Academy del Cimento384, Marian385 and others, showed no perceptible difference in the time of freezing, between boiled and unboiled water; but the former produced ice harder and clearer, the latter ice more full of blisters. In later times, Dr. Black of Edinburgh has, from his experiments, asserted the contrary. Boiled water, he says, becomes ice sooner than unboiled, if the latter be left at perfect rest; but if the latter be stirred sometimes with a chocolate stick, it is converted into ice as soon as the former. This difference he explains in the following manner: – Some motion promotes congelation; this arises in the boiled water through its re-imbibing air; and therefore it must necessarily freeze before the unboiled, provided the latter be kept at perfect rest. Fahrenheit had before remarked that water not moved, would show a cold several degrees below the freezing-point, without becoming ice386.

M. Lichtenberg, with whom I conversed on these contradictory results, assured me that he was not surprised at this difference in the experiments. The time of congelation is regulated by circumstances, with which philosophers are not yet sufficiently acquainted. A certain, but not every degree of stirring hastens it; so that every icy particle which is formed on the side of the vessel, or which falls from the atmosphere, may convert the water sufficiently cooled into ice instantaneously; and such unavoidable accidents must, where all other circumstances are equal, cause a great difference in the period of freezing.

I am inclined to think that the cooling of water, in ancient times, of which I have already spoken, is not to be ascribed so much to the boiling as to the jars being kept continually wet, and to the air to which it was exposed. A false opinion seems therefore to have prevailed respecting the cause; and because it was considered to be the boiling, many have not mentioned the real cause, which appeared to them only to afford a trifling assistance, though it has been remarked both by Galen and Athenæus. We know at present that coolness is produced by evaporation. A thermometer kept wet in the open air falls as long as evaporation continues387. With sulphuric æther, and still better with that of nitre, which evaporates very rapidly, water may be made to freeze even in the middle of summer; and Cavallo saw in summer a Fahrenheit’s thermometer, which stood at 64°, fall in two minutes, by means of æther, to +3, that is to 29° below the freezing-point388.

On this principle depends the art of making ice at Calcutta and other parts of India, between 25° 30′ and 23° 30′ of north latitude, where natural ice is never seen unless imported. Trenches two feet deep, dug in an open plain, are strewed over with dry straw; and in these are placed small shallow unglazed earthen pans, filled with water at sunset. The ice which is produced in them is carried away before sunrise next morning, and conveyed to an ice-cellar fifteen feet deep; where it is carefully covered with straw to be preserved from the external heat and air. A great deal, in this process, depends upon the state of the atmosphere. When calm, pure and serene, it is most favourable to the congelation; but when the winds are variable, or the weather heavy and cloudy, no ice is formed; and the same is often the case when the nights are raw and cold389.

It was once believed that this freezing was occasioned principally by the water having been boiled; but it seems to be owing much rather to evaporation390. It is not however said that the vessels are kept continually wet on the outside, but that they are unglazed, and so porous or little burnt, that the water oozes through them; and on that account their exterior surface appears always moist391. By vessels of this kind the trouble of wetting is saved. What has been said respecting the influence of the weather serves, in some measure, to confirm my conjecture. The more it favours evaporation, the ice is not only formed more easily, but it is better; and when evaporation is prevented by the wind or the weather, no ice is produced. The latest accounts how ice is made at Benares, say expressly that boiled water is not employed; and that all those vessels, the pores of which are stopped by having been used, do not yield ice so soon or so good. In porcelain vessels none is produced; and this is the case also when the straw is wet392.

Another method of cooling water also seems to have been known to Plutarch. It consisted in throwing into it small pebbles or plates of lead393. The author refers to the testimony of Aristotle; but this circumstance I cannot find in the works of that philosopher which have been preserved. It seems to be too unintelligible to admit of any opinion being formed upon it; and the explanation given by Plutarch conveys still less information than the proposition itself. This is the case, in general, with almost all the propositions of the ancients. We indeed learn from the questions that they were acquainted with many phænomena; but the answers scarcely ever repay the trouble which one must employ in order to understand them. They seldom contain any further illustration; and never a satisfactory explanation.

It appears that the practice of cooling liquors, at the tables of the great, was not usual in any country besides Italy and the neighbouring states, before the end of the sixteenth century. In the middle of that century there were no ice-cellars in France; for when Bellon relates, in the Account of his travels, in 1553, how snow and ice were preserved at Constantinople throughout the whole summer, for the purpose of cooling sherbet, he assures us that the like method might be adopted by his countrymen; because he had found ice-cellars in countries warmer than France. The word glacière also is not to be met with in the older dictionaries; and it does not occur even in that of Monet, printed in 1635394. Champier, the physician who attended Francis I. when he had a conference with the emperor Charles V. and pope Paul III. at Nice, saw the Spaniards and Italians put snow, which they caused to be brought from the neighbouring mountains, into their wine in order to cool it. That practice, which excited his astonishment, he declared to be unhealthful; and this proves that in his time it had not been introduced at the French court395.

330.Frisch derives this word from morio, a fool or buffoon.
331.This piece of kitchen furniture was known in the middle of the sixteenth century. Montagne saw one at Brixen, in Tyrol, in the year 1580, and wrote a description of it in his Journal, as a new invention. He says it consisted entirely of wheels; that it was kept in motion by a heavy piece of iron, as clocks are by a weight, and that when wound up in the like manner, it turned the meat for a whole hour. He had before seen, in some other place, another driven by smoke. – Reise, i. pp. 155, 249. The latter kind seem to be somewhat older. Scappi, cook to pope Pius V., gave a figure of one in his book Opera di M. Bartolomeo Scappi, printed at Venice 1570, which is exceedingly scarce. I lately saw a copy, which, instead of eighteen, had twenty-four engravings. It was printed twice afterwards at the same place, viz. in 1571 and 1605, in quarto. The third edition says, “con due aggiunte, cio é il Trinciante et il Maestro di casa.” Bayle seems to confound this book with that of Platina De Honesta Voluptate, or to think that the latter was the real author of it. This however cannot be, as there were more than a hundred years between the periods when Scappi and Platina lived. Platina died in 1481, and not in 1581, as we read in Bayle.
332.De Mundo. cap. vi.
333.Herodot. ii. 48. p. 127. – Lucian. de Syria Dea, 16, ed. Bipont. ix. p. 99.
334.Recueil des Antiquit. iv. p. 259.
335.Doppelmayer, p. 285.
336.Iliad, xviii. 373. It deserves to be remarked, that there were also such τρίποδες αὐτόματοι at the banquet of Iarchas. See Philostrat. Opera, ed. Olearii, pp. 117, 240.
337.Polit. i. 3.
338.In his Menon, p. 426. – Euthyphron, pp. 8, 11.
339.Introd. in Philos. Nat. i. p. 143.
340.Physiologia Kircheriana, fol. p. 69.
341.In Philostrati Opera, ed. Olearii, p. 899.
342.In Mém. de l’Acad. des Inscr. xiii. p. 274.
343.Ode xxvii.
344.Aulus Gellius, x. 12.
345.See Naudé’s Apology, Bayle’s Dictionary, &c. Thomas Aquinas is said to have been so frightened when he saw this head, that he broke it to pieces, and Albertus thereupon exclaimed, “Periit opus triginta annorum!”
346.Schol. Mathemat. lib. ii. p. 65.
347.Dissertat. de Regiomontani Aquila et Musca Ferrea. Altorfi, 1709. – See Mémoires de Trevoux, 1710, Juillet, p. 1283. – Doppelmayer, p. 23. – Fabricii Bibl. Med. Ætat. iv. p. 355. – Heilbronner Hist. Math. p. 504.
348.Strada De Bello Belgico. Mogunt. 1651, 4to, p. 8. He calls the artist Jannellus Turrianus Cremonensis.
349.In the year 1738, Le Méchanisme du Fluteur Automate, par Vaucanson, was printed at Paris, in a thin 4to. It contains only a short description of the flute-player, which is copied into the Encyclopédie, i. p. 448, under the article Androide. The duck, as far as I know, has been nowhere described.
350.Vaucanson died at Paris in 1782.
351.[The publisher is in possession of an elegantly formed mechanical bird-cage, in which two artificial bullfinches wheel about on a perch, flutter their wings, and move their beaks, while emitting musical sounds in imitation of their natural note. A fountain constructed of spiral glass plays in the centre. Beneath the cage is a clock which sets the whole in motion hourly, for three or four minutes; but it may be set going independently, like a musical snuff-box. It is presumed to have been made by Vaucanson about a hundred years ago, and was at one time a principal attraction at Weeks’s celebrated Museum, where that singular piece of mechanism the Tarantula spider was first exhibited.]
352.Nicolai, Reise, i. p. 287.
353.Nouveau Voyage aux Iles de l’Amerique. A la Haye 1724, 2 vols. 4to, ii. pp. 298, 384. From his county he was called Count de Gennes.
354.Zodiacus Vitæ, xi. 846.
355.See a small treatise Ueber H. D. Muller’s Redende Maschine, und über redende Maschinen überhaupt. Nurnberg, 1788, 8vo. – Algem. Teutsches Biblioth. vol. lxxxvii. p. 473. The Speaking Figure and the Automaton Chess-player exposed and detected. London, 1784, 8vo. – [This celebrated chess-playing automaton, invented by M. Vankempelin, was repaired and exhibited in London in 1820, by the ingenious mechanician Maelzel, with considerable success. The figure and machinery were always submitted to the inspection of the visitors, and shifted along the floor in various directions before the game commenced, and the deception was so adroitly managed as to escape the detection of the most scrutinizing. The proprietor always took care to secure the best chess-player in the town before he commenced operations, the wonder therefore was greatly increased by the superiority of the automaton’s play. Mr. Lewis directed it in London. It is now generally admitted that a boy was concealed inside.]
356.Van Dale De Oraculis. Amstelod. 1700, 4to, i. 10, p. 222.
357.Réponse à l’Histoire des Oracles de M. de Fontenelle.
358.A few instances are related by Livy, Valerius Maximus, and Plutarch. Among the fables of the Christian church they are more numerous.
359.Vol. v. p. 90. editio Bipont.
360.Theodoreti Hist. Eccles. v. 22.
361.Cassiodori Variar. i. ep. 45.
362.[Speaking Automaton.– There is a piece of mechanism now exhibiting to the public at the Egyptian Hall – the work of Professor Faber, of Vienna, and the result, as he states, of twenty-five years of labour and preparation. The name which he has given to this product of his ingenuity is the Euphonia; and the work, as that name implies, is another of those many combinations which have attempted, by the anatomical and physiological study of the structures that contribute to the human voice, to attain to an imitation of that organ as regards both sound and articulation. As an example of inductive and mechanical skill this exhibition is well deserving of attention. The professor himself, by an arrangement of bellows-pipes, pedal and keys, which he plays somewhat like the keys of a piano, prompts the discourse of his automaton; which certainly does enunciate both sounds and words. When we entered the room we found it singing to a select society. It requires all our sense of the ingenuity and perseverance which have been bestowed on the work to induce our assent to the proposition which calls the voice human; but undoubtedly it is a remarkable result of contriving skill and scientific patience. —Athæneum.]
363.Historia Ægypti Natural. Lugd. Bat. 1735, 4to, p. 60.
364.Proverbs, xxv. ver. 13.
365.Bartholini de Nivis Usu Medico Observationes, Hafn. 1661.
366.Seneca, Quæst. Natur. iv. 13.
367.Athenæus, iii. p. 124.
368.Sympos. vi. quæst. 6. – Augustinus De Civitate Dei, xxi. 4, p. 610.
369.Mémoires Instructifs pour un Voyageur. How the snow repositories at Constantinople are constructed, is related by Bellon in his Observat. iii. 22.
370.The dissipated Heliogabalus caused whole mounts of snow to be heaped up in summer in order to cool the air. See Lampridius, Vita Heliogab. cap. 23.
371.Plin. xix. 4. – Latinus Pacatus in Panegyr. Theodos.
372.De la Valle, iii. p. 60, where the Persian ice-pits are described, as well as in Chardin, iv. p. 195.
373.Hist. Nat. xxxi. 3, 23, p. 552.
374.Vita Neronis, cap. 48: Hæc est Neronis decocta.
375.In lib. vi. Hippocrat. de Morbis Vulgar. comment. 4, 10.
376.Meteorol. i. cap. 12.
377.In the place before quoted.
378.Deipnos. iii. p. 124.
379.Ibid. p. 123.
380.See Pitisci Lex. Antiq. Rom. under the word Decocta.
381.Philosoph. Transact. vol. lxv. part i. p. 126.
382.Traité du Mouvement des Eaux.
383.Du Hamel, Hist. de l’Academ. l. i. c. 3, p. 99.
384.Tentamina Experimentorum Acad. del Cim. p. 183.
385.Dissertation sur la Glace. Paris, 1749, 12mo, p. 187.
386.Philosoph. Transact. vol. lxv. part i. p. 124.
387.[In India, one mode of cooling wines, is to suspend the bottle in a thick flannel bag, or folds of blotting-paper, kept constantly wetted, and placed in the sun’s rays, or a current of air, or both; by which means the evaporation, and therewith intense coldness, is produced.]
388.Philosoph. Transact. vol. lxxi. part ii. p. 511. [M. Boutigny’s beautiful experiment of making ice in a red-hot crucible is a striking phænomenon of this kind. It is thus performed: – A deep crucible of platinum is heated to a glowing red heat; liquid sulphurous acid, which has been preserved in the fluid state by a freezing mixture, and some water are then at the same instant poured into the crucible. The rapid evaporation of the volatile sulphurous acid, which boils below the freezing-point of water, produces such an intense degree of cold as to freeze the water, which is then thrown out of the crucible as a solid lump.]
389.Philosoph. Transact. vol. lxxi. part ii. p. 252: the process of making ice in the East Indies; by Robert Barker.
390.[There is no question that this refrigeration is caused by the evaporation of a portion of the water, whereby a very large quantity of heat becomes latent in the vapour. A clear serene sky being necessary for the success of the production of the ice, would tend to show that the further loss of heat by radiation, which always ensues to a great extent at nights, when the sky is clear, is necessary.]
391.… a number of small, shallow, earthen pans. These are unglazed, scarce a quarter of an inch thick, about an inch and a quarter in depth, and made of an earth so porous, that it was visible from the exterior part of the pans, the water had penetrated the whole substance. [Our ordinary wine-coolers, which consist of extremely porous vessels, act from evaporation. A portion of the water, which is placed in the interior of the cooler, evaporates through its pores, and produces cold by rendering a considerable amount of heat latent.]
392.See the account of Lloyd Williams, in the Universal Magazine, June 1793, p. 410. Thin unglazed vessels are employed at present in Egypt also for cooling water, as we are told in several books of travels.
393.Sympos. vi. 5, p. 690.
394.The word however may be found in Dictionnaire par Richelet, Genève 1680, 4to.
395.J. B. Campegii Libri xxii. de re cibaria, xvi. 9, p. 669.
Yaş sınırı:
12+
Litres'teki yayın tarihi:
05 temmuz 2017
Hacim:
842 s. 4 illüstrasyon
Telif hakkı:
Public Domain