Kitabı oku: «A History of Inventions, Discoveries, and Origins, Volume II (of 2)», sayfa 3
CHEMICAL NAMES OF METALS
As those metals earliest known, viz. copper, iron, gold, silver, lead, quicksilver and tin, received the same names as the nearest heavenly bodies, which appear to us largest, and have been distinguished by the like characters, two questions arise: Whether these names and characters were given first to the planets or to the metals? When, where, and on what account were they made choice of; and why were the metals named after the planets, or the planets after the metals? The latter of these questions, in my opinion, cannot be answered with any degree of certainty; but something may be said on the subject, which will not, perhaps, be disagreeable to those fond of such researches, and who have not had an opportunity of examining it.
That the present usual names were first given to the heavenly bodies, and at a later period to the metals, is beyond all doubt; and it is equally certain that they came from the Greeks to the Romans, and from the Romans to us. It can be proved also that older nations gave other names to these heavenly bodies at much earlier periods. The oldest appellations, if we may judge from some examples still preserved, seem to have originated from certain emotions which these bodies excited in the minds of men; and it is not improbable that the planets were by the ancient Egyptians and Persians named after their gods, and that the Greeks only adopted or translated into their own language the names which those nations had given them62. The idea that each planet was the residence of a god, or that they were gods themselves, has arisen, according to the most probable conjecture, from rude nations worshiping the sun, which, on account of his beneficent and necessary influence over all terrestrial bodies, they considered either as the deity himself, or his abode, or, at any rate, as a symbol of him. In the course of time, when heroes and persons who by extraordinary services had rendered their names respected and immortal, received divine honours, particular heavenly bodies, of which the sun, moon and planets seemed the fittest, were also assigned to these divinities63. By what laws this distribution was made, and why one planet was dedicated to Saturn and not to another, Pluche did not venture to determine: and on this point the ancients themselves are not all agreed64. When the planets were once dedicated to the gods, folly, which never stops where it begins, proceeded still further, and ascribed to them the attributes and powers for which the deities, after whom they were named, had been celebrated in the fictions of their mythologists. This in time laid the foundation of astrology; and hence the planet Mars, like the deity of that name, was said to cause and to be fond of war; and Venus to preside over love and its pleasures.
The next question is, Why were the metals divided in the like manner among the gods, and named after them? Of all the conjectures that can be formed in answer to this question, the following appears to me the most probable. The number of the deified planets made the number seven so sacred to the Egyptians, Persians and other nations, that all those things which amounted to the same number, or which could be divided by it without a remainder, were supposed to have an affinity or a likeness to and connexion with each other65. The seven metals, therefore, were considered as having some relationship to the planets, and with them to the gods, and were accordingly named after them. To each god was assigned a metal, the origin and use of which was under his particular providence and government; and to each metal were ascribed the powers and properties of the planet and divinity of the like name; from which arose, in the course of time, many of the ridiculous conceits of the alchemists.
The oldest trace of the division of the metals among the gods is to be found, as far as I know, in the religious worship of the Persians. Origen, in his Refutation of Celsus, who asserted that the seven heavens of the Christians, as well as the ladder which Jacob saw in his dream, had been borrowed from the mysteries of Mithras, says, “Among the Persians the revolutions of the heavenly bodies were represented by seven stairs, which conducted to the same number of gates. The first gate was of lead; the second of tin; the third of copper; the fourth of iron; the fifth of a mixed metal; the sixth of silver, and the seventh of gold. The leaden gate had the slow tedious motion of Saturn; the tin gate the lustre and gentleness of Venus; the third was dedicated to Jupiter; the fourth to Mercury, on account of his strength and fitness for trade; the fifth to Mars; the sixth to the Moon, and the last to the Sun66.” Here then is an evident trace of metallurgic astronomy, as Borrichius calls it, or of the astronomical or mythological nomination of metals, though it differs from that used at present. According to this arrangement, tin belonged to Jupiter, copper to Venus, iron to Mars, and the mixed metal to Mercury. The conjecture of Borrichius, that the transcribers of Origen have, either through ignorance or design, transposed the names of the gods, is highly probable: for if we reflect that in this nomination men at first differed as much as in the nomination of the planets, and that the names given them were only confirmed in the course of time, of which I shall soon produce proofs, it must be allowed that the causes assigned by Origen for his nomination do not well agree with the present reading, and that they appear much juster when the names are disposed in the same manner as that in which we now use them67.
This astrological nomination of metals appears to have been conveyed to the Brahmans in India; for we are informed that a Brahman sent to Apollonius seven rings, distinguished by the names of the seven stars or planets, one of which he was to wear daily on his finger, according to the day of the week68. This can be no otherwise explained than by supposing that he was to wear the gold ring on Sunday; the silver one on Monday; the iron one on Tuesday, and so of the rest. Allusion to this nomination of the metals after the gods occurs here and there in the ancients. Didymus, in his Explanation of the Iliad, calls the planet Mars the iron star. Those who dream of having had anything to do with Mars are by Artemidorus threatened with a chirurgical operation, for this reason, he adds, because Mars signifies iron69. Heraclides says also in his allegories, that Mars was very properly considered as iron; and we are told by Pindar that gold is dedicated to the sun70.
Plato likewise, who studied in Egypt, seems to have admitted this nomination and meaning of the metals. We are at least assured so by Marsilius Ficinus71; but I have been able to find no proof of it, except where he says of the island Atlantis, that the exterior walls were covered with copper and the interior with tin, and that the walls of the citadel were of gold. It is not improbable that Plato adopted this Persian or Egyptian representation, as he assigned the planets to the demons; but perhaps it was first introduced into his system only by his disciples72. They seem, however, to have varied from the nomination used at present; as they dedicated to Venus copper, or brass, the principal component part of which is indeed copper; to Mercury tin; and to Jupiter electrum. The last-mentioned metal was a mixture of gold and silver; and on this account was probably considered to be a distinct metal, because in early periods mankind were unacquainted with the art of separating these noble metals73.
The characters by which the planets and metals are generally expressed when one does not choose to write their names, afford a striking example how readily the mind may be induced to suppose a connexion between things which in reality have no affinity or relation to each other. Antiquaries and astrologers, according to whose opinion the planets were first distinguished by these characters, consider them as the attributes of the deities of the same name. The circle in the earliest periods among the Egyptians was the symbol of divinity and perfection; and seems with great propriety to have been chosen by them as the character of the sun, especially as, when surrounded by small strokes projecting from its circumference, it may form some representation of the emission of rays. The semicircle is in like manner the image of the moon, the only one of the heavenly bodies that appears under that form to the naked eye. The character ♄ is supposed to represent the sythe of Saturn; ♃ the thunderbolts of Jupiter; ♂ the lance of Mars, together with his shield; ♀ the looking-glass of Venus; and ☿ the caduceus or wand of Mercury.
The expression by characters adopted among the older chemists agrees with this mythological signification only in the character assigned to gold. Gold, according to the chemists, was the most perfect of metals, to which all others seemed to be inferior in different degrees. Silver approached nearest to it; but was distinguished only by a semicircle, which, for the more perspicuity, was drawn double, and thence had a greater resemblance to the most remarkable appearance of the moon; the name of which this metal had already obtained. All the other metals, as they seemed to have a greater or less affinity to gold or silver, were distinguished by marks composed of the characters assigned to these precious metals. In the character ☿ the adepts discover gold with a silver colour. The cross placed at the bottom, which among the Egyptian hieroglyphics had a mysterious signification74, expresses, in their opinion, something I know not what, without which quicksilver would be silver or gold. This something is combined also with copper, the possible change of which into gold is expressed by the character ♀. The character ♂ declares the like honourable affinity also; though the half-cross is applied in a more concealed manner; for, according to the most proper mode of writing, the point is wanting at the top, or the upright line ought only to touch the horizontal, and not to intersect it. Philosophical gold is concealed in steel; and on this account it produces such valuable medicines. Of tin one-half is silver, and the other consists of the something unknown: for this reason the cross with the half moon appears in ♃. In lead this something is predominant, and a similitude is observed in it to silver. Hence in its character ♄ the cross stands at the top, and the silver character is only suspended on the right-hand behind it.
The mythological signification of these characters cannot be older than the Grecian mythology; but the chemical may be traced to a much earlier period. Some, who consider them as remains of the Egyptian hieroglyphics75, pretend that they may be discovered on the table of Isis, and employ them as a proof of the high antiquity, if not of the art of making gold, at least of chemistry. We are told also that they correspond with many other characters which the adepts have left us as emblems of their wisdom.
If we are desirous of deciding without prejudice respecting both these explanations, it will be found necessary to make ourselves acquainted with the oldest form of the characters, which in all probability, like those used in writing, were subjected to many changes before they acquired that form which they have at present. I can, however, mention only three learned men, Salmasius76, Du Cange77, and Huet78, who took the trouble to collect these characters. As I am afraid that my readers might be disgusted were I here to insert them, I shall give a short abstract of the conclusion which they form from them; but I must first observe that the oldest manuscripts differ very much in their representation of these characters, either because they were not fully established at the periods when they were written, or because many supposed adepts endeavoured to render their information more enigmatical by wilfully confounding the characters; and it is probable also that many mistakes may have been committed by transcribers.
The character of Mars, according to the oldest mode of representing it, is evidently an abbreviation of the word Θοῦρος, under which the Greek mathematicians understood that deity; or, in other words, the first letter Θ, with the last letter ς placed above it. The character of Jupiter was originally the initial letter of Ζεύς; and in the oldest manuscripts of the mathematical and astrological works of Julius Firmicus the capital Ζ only is used, to which the last letter ς was afterwards added at the bottom, to render the abbreviation more distinct. The supposed looking-glass of Venus is nothing else than the initial letter, a little distorted, of the word Φωσφόρος, which was the name of that goddess. The imaginary sythe of Saturn has been gradually formed from the first two letters of his name Κρόνος, which transcribers, for the sake of dispatch, made always more convenient for use, but at the same time less perceptible. To discover in the pretended caduceus of Mercury the initial letter of his Greek name Στίλβων, one needs only look at the abbreviations in the oldest manuscripts, where they will find that the Σ was once written as Ϲ; they will remark also that transcribers, to distinguish this abbreviation still more from the rest, placed the C thus, ◡; and added under it the next letter τ. If those to whom this deduction appears improbable will only take the trouble to look at other Greek abbreviations, they will find many that differ still further from the original letters they express than the present character ☿ from the Ϲ and τ united. It is possible that later transcribers, to whom the origin of this abbreviation was not known, may have endeavoured to give it a greater resemblance to the caduceus of Mercury. In short, it cannot be denied that many other astronomical characters are real symbols, or a kind of proper hieroglyphics, that represent certain attributes or circumstances, like the characters of Aries, Leo, and others quoted by Salmasius.
But how old is the present form of these characters? According to Scaliger79, they are of great antiquity, because they are to be found on very old gems and rings. If the ring No. 104 in Goræus be old and accurately delineated, this must indeed be true; for some of these characters may be very plainly distinguished on the beazel80. We are told by Wallerius that they were certainly used by the ancient Egyptians, because Democritus, who resided five years in Egypt, speaks of them in the plainest terms. I do not know whence Wallerius derived this information, but it proves nothing. He undoubtedly alludes to the laughing philosopher of Abdera, who lived about 450 years before our æra, but no authentic writings of his are now extant. Fabricius says that we have a Latin translation of a work of his, De Arte Sacra, Patavii, 1572, which, however, is certainly a production of much later times. I have it now before me from the library of our university; and I find that it is not the whole book, but only an abstract, and written in so extravagant a manner that the deception is not easily discovered. It contains chemical processes, but nothing of the characters of metals; which is the case also with the letters of Democritus, published by Lubbinus81.
[By way of contrast to the seven metals with which the ancients were acquainted, we may enumerate those known at the present day. They are as follows: —
ZINC
Zinc is one of those metals which were not known to the Greeks82, Romans, or Arabians. This we have reason to conjecture, because it has not been distinguished by a chemical character like the rest; but it is fully proved, by our not finding in the works of the ancients any information that appears even to allude to it. I know but of one instance where it is supposed to have been found among remains of antiquity. Grignon pretends that something like it was discovered in the ruins of the ancient Roman city in Champagne83. Such an unexpected discovery deserved to have been investigated with the utmost minuteness; but it seems to have been examined only in a very superficial manner; and as that was the case, it is impossible to guess what kind of a metal or metallic mixture this author considered as zinc.
It is not surprising that this metal should have remained so long unknown, for it has never yet been found in the metallic state. Its ores are often and in a great degree mixed with foreign ingredients; and when they are melted, it sublimes in a metallic form, and is found adhering above to the cool sides of the furnace; but a particular apparatus is necessary, else the reduced metal partly evaporates, and is partly oxidized, by which means it appears like an earth, and exhibits to the eye no traces of metal.
That mixture of zinc and copper called at present brass, tomback, pinchbeck, princes-metal, &c., and which was first discovered by ores, abundant in zinc, yielding when melted not pure copper, but brass, was certainly known to the ancients. Mines that contained ores, from which this gold-coloured metal was produced, were held in the highest estimation; when exhausted, the loss of them was regretted; and it was supposed that the metal would never be again found. In the course of time it was remarked, no one knows by what accident, that an ore, which must have been calamine, when added to copper while melting, gave it a yellow colour. This ore was therefore used, though it was not known what metal it contained, in the same manner as oxide of cobalt was employed in colouring glass before mineralogists were acquainted with that metal itself. Aristotle and Strabo speak of an earth of that kind, the use of which in making brass has been retained through every century. Ambrosius, bishop of Milan, in the fourth century; Primasius, bishop of Adrumetum in Africa, in the sixth; and Isidore, bishop of Seville, in the seventh, mention an addition by which copper acquired a gold colour, and which undoubtedly must have been calamine. When in course of time more calamine was discovered, the ancient method of procuring brass from copper-ore that contained zinc was abandoned; and it was found more convenient first to extract from it pure copper, and then to convert it into brass by the addition of calamine.
Those desirous of inquiring further into the knowledge which the ancients had of this metal must examine the meaning of the word cadmia, which seems to have had various significations. This task I have ventured to undertake; and though I cannot clear up everything that occurs respecting it, I shall lay before my readers what information I have been able to obtain on the subject, because perhaps it may amount to somewhat more than is to be found in the works of old commentators. Cadmia signified, then, in the first place, a mineral abounding in zinc, as well as any ore combined with it, and also that zinc-earth which we call calamine. Those who should understand under it only the latter, would not be able to explain the greater part of the passages in the ancients where it is mentioned. It is probable that ore containing zinc acquired this name, because it first produced brass84. When it was afterwards remarked that calamine gave to copper a yellow colour, the same name was conferred on it also. It appears, however, that it was seldom found by the ancients85; and we must consider cadmia in general as signifying ore that contained zinc. Gold-coloured copper or brass was long preferred to pure or common copper, and thought to be more beautiful the nearer it approached to the best aurichalcum. Brass therefore was supposed to be a more valuable kind of copper; and on this account Pliny says that cadmia was necessary for procuring copper, that is brass. Copper, as well as brass, was for a great length of time called æs, and it was not till a late period that mineralogists, in order to distinguish them, gave the name of cuprum to the former86. Pliny says that it was good when a large quantity of cadmia had been added to it, because it not only rendered the colour more beautiful, but increased the weight. In the like manner a quintal of copper in Hungary produces a hundred and fifty pounds of brass. The same author remarks also that the cadmia (fossilis) was not used in medicine: this however is to be understood only of the raw ore, for some physicians prepared oxide of zinc from ore that contained zinc, as he afterwards tells us; and Galen extols the calamine found in Cyprus on account of its superior effects, because, perhaps, the oxide could be obtained from it much purer.
In the second place, cadmia, among the ancients, was what we call (ofenbruch) furnace-calamine, or what in melting ore that contains zinc, or in making brass, falls to the bottom of the furnace, and which consists of more or less calcined zinc. As this furnace-calamine assumes various appearances, according to the manner of melting, and according to many other circumstances that in part cannot be defined, and as the ancients comprehend all its varieties under the general name of cadmia, and give to each variety, according to its form, consistence and colour, a particular name also, a confusion of names has hence arisen which cannot now be cleared up, especially as it is not thought worth while to distinguish all its incidental variations. Our physicians esteem only the pure oxide of zinc; and as they know how to obtain it, they are not under the necessity of using impure furnace-calamine. In our melting-houses it is employed, without much nicety in the choice, for making zinc or brass87.
What here appears to me most singular is, that the ancients should have given the same names to furnace-calamine as they gave to ores that contained zinc. The affinity of these substances they could conjecture only from their effects, or perhaps they were induced to do so from observing that furnace-calamine was not produced but when the different kinds of cadmia, as they were called, were melted; that is, when yellow and not red copper was obtained. Ofenbruch got the name of furnace-calamine at Rammelsberg, when it was observed that it could be employed instead of native calamine for making brass88. Were the ancients then in any measure acquainted with this use of it? Galen and Dioscorides speak only of its use in medicine, and say nothing of its being employed in the preparation of brass. The Arabian writers, particularly the translators of the Greek physicians, speak in a much clearer manner of the preparation of brass; but the appellations which they employ are so indeterminate in their signification, that an answer to the above question cannot be deduced from them. Climia, which some pronounce calimia and from which the modern Greeks made kelimia, and the Latins lapis calaminaris, seems to have entirely the same meaning as cadmia. Tutia, which occurs first in the eleventh century, in Avicenna, and which the Greeks write toutia, or perhaps more properly thouthia, signifies sometimes pompholyx; but in common it seems to express also minerals that contain zinc, and likewise furnace-calamine89. Could it be proved that the tutia of the Arabs and later Greeks was furnace-calamine, or the tutia of our druggists, the oldest account with which I am acquainted of furnace-calamine, employed in making brass, would occur in Zosimus, who, according to every appearance, lived in the fifth century90. This author tells us, that in order to make brass, Cyprus copper must be melted, and pounded tutia must be strewed over it. Salmasius suspects that Zosimus here means only calamine: but however this may be, his receipt has been retained till the present time in books on the arts; for these recommend not calamine, but tutia91.
We can with more certainty affirm that this use of furnace-calamine, in making brass, was known to Albertus Magnus in the thirteenth century; for he says, first, that yellow copper was made by the addition of calamine, which he calls lapis calaminaris. He tells us afterwards, that Hermes taught how to give a gold colour to copper by throwing pounded tutia into the melted metal. Tutia, says he, which is used in the transmutation of metals, is not a native mineral, but an artificial mixture, produced in the furnace when copper-ore is melted; and he advises glass-gall to be strewed over the ore, otherwise calamine and tutia will lose their force in the fire92. It would appear that the last-mentioned name, in the thirteenth century, signified only furnace-calamine, and that its use for making brass was at that period known.
For many centuries, however, the ofenbruch (furnace-calamine), with which, as we are told, the furnaces at Rammelsberg overflowed, was thrown aside as useless, till at length, in the middle of the sixteenth century, Erasmus Ebener first showed that it might be used instead of native calamine for making brass. This Ebener, descended from the noble family of that name at Nuremberg, was a man of great learning, and an able statesman. He was employed by his native city, and by foreign princes, on occasions of the highest importance. In 1569 he was privy-counsellor to Julius duke of Brunswick, and died in 1577, at Helmstadt, where he was buried. I regret much that I can give no further account of this important discovery; the time even when it was made is not known with certainty. Lœhneyss says that it was sixty years before the period when he wrote. But at what period did he write? The oldest edition, with which I am acquainted, of his treatise on mines, is of the year 1617, so that this discovery would fall about the year 155793. Calvör caused to be printed an old account of the Rammelsberg mines, which was said to have been published in 1565. According to that work, Ebener made the above-mentioned observation at Nuremberg, about seventeen years before, that is, about the year 1548. Schluter assigns as the period about 1550, and Honemann about 1559. We may therefore very safely place it in the middle of the sixteenth century, and probably the discovery happened in 1553, at which time Ebener was sent to duke Henry, with whom he continued a long time, as we are expressly told by Doppelmayer. This use of calamine refuse induced the managers of the profitable brass-works in the Harz forest to pick up carefully that which before had been thrown aside. Duke Julius, who endeavoured to improve every branch of manufacture, and particularly what related to metallurgy, and who, agreeably to the then prevailing mode of princes, suffered himself to be duped with the hopes of making gold, improved the brass-works at Buntheim, below Harzburg, and by these means brought a great revenue to the electoral treasury.
Another production of zinc, artificial white vitriol, was also long prepared, used and employed in commerce before it was known that it was procured from this metal. That it was not known before the middle of the sixteenth century, and that it was first made at Rammelsberg, may with confidence be affirmed. Schluter ascribes the invention of it to duke Julius, and places it in the year 1570: but it must be somewhat older than the above-quoted account of Rammelsberg; for the author, who wrote about 156594, relates, that in his time one citizen only, whom he calls Henni Balder, boiled white vitriol; and it appears that this person kept the process a secret. That the invention was not then new, is evident from his adding, that what its effects might be in medicine had not been examined; but that its use in making eye-water had been known almost as early as the time when it was discovered. This agrees with another account, according to which the method of boiling white vitriol was found out at the time when Christopher Sander, whose service to the Harz is well-known, was tithe-gatherer. Honemann says that Sander was tithe-gatherer at the mines of the Upper Harz before the year 1564, but that in this year he was principal tithe-gatherer and director of the mines and melting-houses at Goslar. Sander himself, in a paper dated August 3, 1575, seems to ascribe the invention of white vitriol to duke Julius95.
At first this salt was called Erzalaun, a name occasioned by its likeness to alum, but afterwards it was more frequently known by those of Gallitzenstein, Golitzenstein, and Calitzenstein. The latter names however appear to be older than white vitriol itself; as we find that green vitriol, even before the year 1565, was called green Gallitzenstein. May not the word be derived from gallæ; because it is probable that vitriol and galls were for a long time the principal articles used for making ink and in dyeing? I am of opinion that the white vitriol, which is produced in the mines of Rammelsberg in the form of icicles, gave rise to the discovery and manufacture of this salt. The former, so early as the year 1565, was called white native vitriol, or white Gogkelgut, and was packed up in casks, and in that manner transported for sale96. I shall not here enter into the old conjectures respecting the origin and component parts of this vitriol; but it deserves to be remarked, that Henkel and Neumann97 observed in it a mixture of zinc, by which Brandt, a member of the Swedish council of mines, was led to prove, that, when pure, it consists of vitriolic acid and oxide of zinc; and this was afterwards confirmed by Hellot98.
I come now, in the last place, to the history of this metal, which, when furnace-calamine was used, could not remain long unobserved, as it is sometimes found amongst it uncalcined in metallic drops. It is worthy of remark, that Albertus Magnus, who first described the use of furnace-calamine in making brass, is the oldest author in whose works mention is made of zinc. He calls it marchasita aurea. This was properly a stone, the metallic particles of which were so entirely sublimated by fire, that nothing but useless ashes remained behind. It contained fixed quicksilver, communicated a colour to metals, on which account it was well known to the alchemists, burned in the fire, and was at length entirely consumed. It was found in various parts, but that at Goslar was the best, because the copper it contained seemed to have in it a mixture of gold. To give this copper however a still greater resemblance to gold, some tin was added to it, by which means it became more brittle. This marchasita also rendered copper white as silver. Thus far Albertus. It obtained without doubt the name of marchasita aurea, because zinc communicates a yellow colour to copper; and for the same reason the Greeks and the Arabians called cadmia golden or aurea. But how could Albertus say that marchasite made copper white? Did he commit a mistake, and mean tin? To me this appears not probable, as at one time he seems to call it argentea. I imagine that he knew that copper, when mixed with as much zinc as possible, that is, according to Scheffer, eighty-nine pounds to a hundred, became white; and it appears that by this he wished to establish its affinity with quicksilver.
Pompholyx was the name of the white flowers of zinc which Dioscorides, v. 85, p. 352, compares to wool, and which by chemists were formerly called lana philosophica. The ancients collected these flowers when produced by the melting of zinc-ore; but they obtained them also by an apparatus which is fully described by Dioscorides and Galen, and which approaches near to that used for collecting arsenic in the poison melting-houses, as they are usually called.