Sadece LitRes`te okuyun

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «Nature's Teachings», sayfa 2

Yazı tipi:

CHAPTER II.
THE OAR, THE PADDLE, AND THE SCREW

Propulsion by the Oar.—Parallels in the Insect World.—The “Water-boatman.”—Its Boat-like Shape.—The Oar-like Legs.—Exact mechanical Analogy between the Legs of the Insect and the Oars of the human Rower.—“Feathering” Oars in Nature and Art.—The Water-boatman and the Water-beetles.—The Feet of the Swan, Goose, and other aquatic Birds.—The Cydippe, or Beroë.—The Self-feathering Paddle-wheel.—Indirect Force.—The Wedge, Screw, and Inclined Plane.—“Sculling” a Boat.—The “Tanka” Girls of China.—Mechanical Principle of the Screw, and its Adaptation to Vessels.—Gradual Development of the Nautical Screw.—Mechanical Principle of the Tail of the Fish, the Otter, and the sinuous Body of the Eel and Lampern.—The Coracle and the Whirlwig-beetle.

THE Boat naturally reminds us of the Boatman. In the two gnat-boats which have been described there is no propelling power used or needed, the little vessel floating about at random, and its only object being to keep afloat. But there are many cases where the propelling power is absolutely essential, and where its absence would mean death, as much as it would to a ship which was becalmed in mid ocean without any means of progress or escape. There are, for example, hundreds of creatures, belonging to every order of animals, which are absolutely dependent for their very existence on their power of propulsion, and I believe that there is not a single mode of aquatic progression employed by man which has not been previously carried out in the animal world. There are so many examples of this fact that I am obliged to select a very few typical instances in proof of the assertion.

Taking the Oar as the natural type of progression in the water, we have in the insect world numerous examples of the very same principle on which our modern boats are propelled. And it is worthy of notice, that the greater the improvement in rowing, the nearer do we approach the original insect model.

The first which we shall notice is the insect which, from its singular resemblance to a boat propelled by a pair of oars, has received the popular name of Water-boatman. Its scientific name is Notonecta glauca, the meaning of which we shall presently see. It belongs to the order of Heteroptera, and is one of a numerous group, all bearing some resemblance to each other in form, and being almost identical in habits. Though they can fly well, and walk tolerably, they pass the greater part of their existence in the water, in which element they find their food.

Predacious to a high degree, and armed with powerful weapons of offence, it is one of the pirates of the fresh water, and may be found in almost every pond and stream, plying its deadly vocation.

Its large and powerful wings seem only to be employed in carrying it from one piece of water to another, while its first and second pairs of legs are hardly ever used at all for progression. The last pair of legs are of very great length, and furnished at their tips with a curiously constructed fringe of stiff hairs. The body is shaped in a manner that greatly resembles a boat turned upside down, the edge of the elytra forming a sort of ridge very much like the keel of the boat.

When the creature is engaged in swimming, it turns itself on its back, so as to bring the keel downwards, and to be able to cut the water with the sharp edge. From this habit it has derived the name of Notonecta, which signifies an animal which swims on its back. The first and second pairs of legs are clasped to the body, and the last pair are stretched out as shown in the illustration, not only looking like oars, but being actually used as oars.

Now, I wish especially to call the reader’s attention to the curiously exact parallel between the water-boatman and the human oarsman. As the reader may probably know, the oar is a lever of the second order, i.e. the power comes first, then the weight, and then the fulcrum. The arm of the rower furnishes the power, the boat is the weight to be moved, and the water is the fulcrum against which the lever acts.

I have more than once heard objections to this definition, the objectors saying that the water was a yielding substance, and therefore could not be the fulcrum. This objection, however, was easily refuted by taking a boat up a narrow creek, and rowing with the oar-blades resting on the shore, and not in the water.


Now, the swimming legs of the water-boatman are exact analogues of the oars of a human rower. The internal muscles at the juncture of the leg with the body supply the place of the rower’s arms, the leg itself takes the office of the oar, and the body of the insect is the weight to be moved, and the water supplies the fulcrum. Even the broad blade at the end of the oar is anticipated by the fringe of bristles at the end of the leg, and its sharpened edge by the shape of the insect’s limb.

Besides these resemblances, there is another which is worthy of notice. All rowers know that one of their first lessons is to “feather” their oars, i.e. to turn the blade edgewise as soon as it leaves the water. Nothing looks more awkward than for a boatman to row without feathering. (We all must remember the eulogy on the “Jolly Young Waterman,” who “feathered his oars with skill and dexterity.”) In the first place, he must lift his oar very high out of the water, and, in the second, he will be impeded by any wind that happens to come against the blades.

The Water-boatman, however, does not lift its legs out of the water after every stroke, as a human boatman does, and therefore it has no need to feather in the same way. But there is even greater need for a feathering of some kind in the insect’s leg, on account of the greater resistance offered by water than by air, and this feathering is effected by the arrangement of the blade-bristles, which spread themselves against the water as the stroke is made, and collapse afterwards, so as to give as little resistance as possible when the stroke is completed.

In Art we have invented many similar contrivances, but I believe that there is not one in which we have not been anticipated by Nature. Putting aside the insect which has just been described, we have the whole tribe of water-beetles, in which the same principle is carried out in an almost identical manner. In the accompanying illustration, the oar, the rower, and the boat are placed above one another, and next to them are seen one of the oar-legs of the water-boatman and the insect as it appears when swimming on its back.

Then, there is the foot of the duck, goose, swan, and various other aquatic birds, in which the foot presents a broad blade as it strikes against the water, and a narrow edge as it recovers from the stroke. Some years ago, a steam yacht was built and propelled by feet made on the model of those of the swan. She was a very pretty vessel, but art could not equal nature, and at present the swan-foot propeller, however perfect in theory, has not succeeded in action. Perhaps, if some nautical engineer were to take it in hand, he would procure the desired result.

Almost exactly similar is the mode of propulsion employed by the lobster, the prawns and shrimps, their tails expanding widely into a fan-like shape as they strike against the water, and then collapsing when the stroke is withdrawn, so as to allow them to pass through the water with the least possible resistance.

The same principle is to be seen in the lively little Acaleph, for which there is unfortunately no popular name, and which we must therefore call by its scientific title of Cydippe, or Beroë, these names being almost indifferently used. When full grown, it is about as large as an acorn, and very much of the same shape. It is as transparent as if made of glass, and, when in the water, is only visible to practised eyes.

En passant, I may remark that the familiar term of “water,” when applied to diamonds, is owing to their appearance when placed in distilled water. Those which can be at once seen are called stones of the second water. Those which cannot be seen, because their refractive powers are equal to those of the water, are called “diamonds of the first water,” and are very much more valuable than the others.

As the Cydippe is, in fact, little more than sea-water, entangled in the slightest imaginable and most transparent tissue of animal fibre, it is evident that the water and the Cydippe must be of almost equal refracting power, and that therefore the acaleph must be as invisible as diamonds of the “first water.” Indeed, I have often had specimens in a glass jar which were absolutely invisible to persons to whom I wished to show them.

But an experienced eye detects the creature at once. Along its body, at equal distances, are eight narrow bands, over which the colours of the rainbow are, though very faint, perpetually rippling. This appearance is caused by the machinery which impels the body, and which seems never to cease. Each of these bands is composed of a vast number of tiny flaps, which move up and down in regular succession, so as to cause the light to play on their surfaces. And, as they move as if set on hinges, they of course offer no resistance to the water after their stroke is made.



Now let us compare these works of nature with those of art. We have already seen the parallels of the oar, and we now come to those of the paddle-wheel. When paddle-steamers were first invented, the blades were fixed and projected from the wheel, as if they had been continuations of its spokes. It was found, however, that a great waste of power, together with much inconvenience, was caused by this arrangement. Not only was a considerable weight of water raised by each blade after it passed the middle of its stroke, but the steam power was given nearly as much to lifting and shaking the vessel as to propulsion.

A new kind of paddle-wheel was then invented, in which the blades were ingeniously jointed to the wheel, so that they presented their flat surfaces to the water while propelling, and their edges when the stroke was over. This, which is known by the name of the “Self-feathering Paddle-wheel,” was thought to be a very clever invention, and so it was; but not even the inventors were likely to have known that if they had only looked into the book of Nature, they might have found plenty of self-feathering paddle-wheels, beside the few which my limited space enables me to give.

If the reader will look at the illustration, he will see that on one side is represented the self-feathering paddle-wheel of Art, with its ingenious arrangement of rods and hinges. On the other side there comes, first, the common Prawn, shown with its tail expanded in the middle of its stroke.

Just below it is a Cydippe of its ordinary size, showing the paddle-bands, one of which is drawn at the side much magnified, so as to show the arrangement of the little paddles. As to the tentacles which trail from the body, we shall treat of them when we come to our next division of the subject of the work.

Lastly, there is a representation of the self-feathering feet of the Duck, the left foot expanded in striking the water, and the right closed so as to offer no resistance when drawn forward for another stroke. The swan’s foot shows this action even more beautifully than does that of the duck.

We now come to another mode of propulsion, namely, that which is not due to direct pressure of a more or less flat body against the water, but to the indirect principle of the screw, wedge, or inclined plane.

Space being valuable, I will only take two instances, namely, the well-known mode of propelling a boat by a single oar working in a groove or rowlock in the middle of the stern, and the ordinary screw of modern steamers.

Most of my readers must have seen a sailor in the act of “sculling” a boat. A tolerably deep notch is sunk in the centre of the stern, and the oar is laid in it, as shown in the central illustration, on the right-hand side. The sailor then takes the handle of the oar, and works it regularly backwards and forwards, without taking the blade out of the water. The boat at once begins to move forward, and, when the oar is urged by a strong and experienced man, can be propelled with wonderful speed. The well-known “Tanka” boat-girls of China never think of using two oars, a single oar in the stern being all-sufficient for the rapid and intricate evolutions required in their business.



The mechanical process which is here employed is nothing more than that of the inclined plane, or rather, the wedge, the oar-blade forming the wedge, and the force being directed against the stern of the boat, and so driving it through the water.

The Rudder affords another example of a similar force, although it is used more for directing than propelling a vessel. Still, just as the scull is used not only for propelling, but for steering the boat, the rudder, when moved steadily backwards and forwards, can be used for propulsion as well as steerage. In the absence of oars, this property is most useful, as I can practically testify.

So different in appearance are the screw and the inclined plane, that very few people would realise the fact that the screw is nothing but an inclined plane wound round a cylinder, or rather, is a circular inclined plane. The ordinary corkscrew is a good example of this principle, the cylinder being but an imaginary one.

Now, if the screw be turned round, it is evident that force is applied just on the principle of the wedge, and this principle is well shown in the various screw-presses, of which the common linen-press is a familiar example, as was the original printing-press, which still survives as a toy for children.

We all know the enormous force exerted by screws when working in wood, and how, when the screw-driver is turned in the reverse direction, the instrument is forced backwards, though the operator is leaning against it with all his weight. In fact, a comparatively small screw, if working in hard wood or metal, so that the threads could not break, could lift a heavy man.

Substitute water for wood or metal, and the result would be the same in principle, though the resistance would be less. As the loss of power by friction would prevent a large vessel from being propelled by a stern oar moved like a scull, the idea was invented of applying the same kind of power by a large screw, which should project into the water from the stern of the vessel. This modification, moreover, would have the advantage of forcing the vessel forward when the screw was turned from left to right, and drawing it back when turned in the opposite direction, whereas the sculling oar would only drive it forward.

The principle was right enough, but there was at first a great difficulty in carrying it out. Firstly, several turns of a large screw were used, and were found to need power inadequate to the effect. Then the screw was reduced to four separate blades, and now only two are used, as shown in the illustration, these saving friction, being equally powerful for propulsion, and running less risk of fouling by rigging blown overboard or other floating substances.

So much for Art. Now for the same principle as shown in Nature, of which I can take but a very few instances.

The first and most obvious example is that of the Fish-tail, which any one may observe by watching ordinary gold fish in a bowl. Their progression is entirely accomplished by the movement of the tail from side to side, exactly like that of the sculling oar, and moreover, like the oar, the tail acts as rudder as well as propeller.

The force with which this instrument can be used may be estimated by any one who is an angler, and knows the lightning-like rush of a hooked trout, or who has seen the wonderful spring with which a salmon shoots clear out of the water, and leaps up a fall several feet in height. This is not done, as many writers state, by bending the body into a bow-like form, and then suddenly straightening it, but by the projectile force which is gained by moving the tail backwards and forwards as a sculler moves his oar.

Perhaps some of my readers have seen the wonderful speed, ease, and grace with which an Otter propels itself through the water. As the otter feeds on fish, and can capture even the salmon itself, its powers of locomotion must be very great indeed. And these are obtained entirely by means of the tail, which is long, thick, and muscular, and can be swept from side to side with enormous force, considering the size of the animal. The legs have little or nothing to do with the act of swimming. The fore-legs are pressed closely against the body, and the hind-legs against each other. The latter act occasionally as assistants in steering, but that is all.

Then there are the various Seals, whose hind-legs, flattened and pressed together, act exactly like the tail of the fish, that of the otter, the oar of the sculler, or the screw of the steamer. Also, the eel, when swimming, uses exactly the same means, its lithe body forming a succession of inclined planes; so does the snake, and so does the pretty little lampern, which is so common in several of our rivers, and so totally absent from others.

I can only now give a short description of the woodcut which illustrates these points.

On the right hand Art is shown by the screw-blades of the modern steamer. In the middle is the ordinary mode of sculling a boat by an oar in the stern, and below it is the rudder, which, like the sculling oar, may be used either for propulsion or direction.

On the left hand we have three examples of the same mechanical powers as shown in Nature. The uppermost figure represents a fish as in the act of swimming, the dotted lines showing the movement of its tail, and the principle of the wedge. In the middle is an otter, just preparing to enter the water, and below is a seal, both of them showing the identity of mechanism between themselves and the art of man. I need not say that the mechanism of art is only a feeble copy of that of nature, but nothing more could be expected.

While we are on this subject I may as well mention two more applications of the screw principle. The first is the windmill, the sails of which are constructed on exactly the same principle as the blades of the nautical screw. Only, as they are pressed by the wind, and the mill cannot move, they are forced to revolve by the pressure of the wind, just as the screw of a steamer revolves when the vessel is being towed, and the screw left at liberty.

Moreover, just as the modern screws have only two blades, so, many modern windmills have only two sails, the expense and friction being lessened, and the power not injured.

Again: some years ago there was a very fashionable toy called the aërial top. It was practically nothing but a windmill in miniature, rapidly turned by a string, after the manner of a humming-top. The edges of the sails being turned downwards, the instrument naturally screwed itself into the air to a height equivalent to the velocity of the motion.

A similar idea has been mooted with regard to the guidance of balloons, or even to aërial voyaging without the assistance of gas, but at present the weight of the needful machinery has proved to be in excess of the required lifting power.

In fine, the application of the inclined plane, wedge, or screw as a motive power, is so wide a subject that I must, with much reluctance, close it with these few and obvious examples.

It is worth while, by the way, to remark how curiously similar are such parallels. I have already mentioned the very evident resemblance between the water-boatman, the water-beetles, and the human rower, the body of the insect being shaped very much like the form of the modern boat. I must now draw the attention of the reader to the similitude between the very primitive boat known by the name of Coracle, and the common Whirlwig-beetle (Gyrinus natator), which may be found in nearly every puddle. The shape of the insect is almost identical with that of the boat, and the paddle of the coracle is an almost exact imitation of the swimming legs of the whirlwig. And, as if to make the resemblance closer, many coraclers, instead of using a single paddle with two broad ends, employ two short paddles, shaped very much like battledores.


Yaş sınırı:
12+
Litres'teki yayın tarihi:
15 eylül 2018
Hacim:
738 s. 231 illüstrasyon
Telif hakkı:
Public Domain
Metin
Ortalama puan 5, 1 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 5, 2 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 5, 1 oylamaya göre