Kitabı oku: «From the Earth to the Moon, Direct in Ninety-Seven Hours and Twenty Minutes: and a Trip Round It», sayfa 3

Yazı tipi:

CHAPTER VI.
THE PERMISSIVE LIMITS OF IGNORANCE AND BELIEF IN THE UNITED STATES

The immediate result of Barbicane's proposition was to place upon the orders of the day all the astronomical facts relative to the Queen of Night. Everybody set to work to study assiduously. One would have thought that the moon had just appeared for the first time, and that no one had ever before caught a glimpse of her in the heavens. The papers revived all the old anecdotes in which the "sun of the wolves" played a part; they recalled the influences which the ignorance of past ages ascribed to her; in short, all America was seized with seleno-mania, or had become moon-mad.

The scientific journals, for their part, dealt more especially with the questions which touched upon the enterprise of the Gun Club. The letter of the Observatory of Cambridge was published by them, and commented upon with unreserved approval.

Until that time most people had been ignorant of the mode in which the distance which separates the moon from the earth is calculated. They took advantage of this fact to explain to them that this distance was obtained by measuring the parallax of the moon. The term parallax proving "caviare to the general," they further explained that it meant the angle formed by the inclination of two straight lines drawn from either extremity of the earth's radius to the moon. On doubts being expressed as to the correctness of this method, they immediately proved that not only was the mean distance 234,347 miles, but that astronomers could not possibly be in error in their estimate by more than 70 miles either way.

To those who were not familiar with the motions of the moon, they demonstrated that she possesses two distinct motions, the first being that of rotation upon her axis, the second that of revolution round the earth, accomplishing both together in an equal period of time, that is to say, in 27⅓ days.

The motion of rotation is that which produces day and night on the surface of the moon; save that there is only one day and one night in the lunar month, each lasting 354⅓ hours. But, happily for her, the face turned towards the terrestrial globe is illuminated by it with an intensity equal to the light of fourteen moons. As to the other face, always invisible to us, it has of necessity 354 hours of absolute night, tempered only by that "pale glimmer which falls upon it from the stars."

Some well-intentioned but rather obstinate persons, could not at first comprehend how, if the moon displays invariably the same face to the earth during her revolution, she can describe one turn round herself. To such they answered, "Go into your dining-room, and walk round the table in such a way as always to keep your face turned towards the centre; by the time you will have achieved one complete round you will have completed one turn round yourself, since your eye will have traversed successively every point of the room. Well, then, the room is the heavens, the table is the earth, and the moon is yourself." And they would go away delighted.

So, then, the moon displays invariably the same face to the earth; nevertheless, to be quite exact, it is necessary to add that, in consequence of certain fluctuations of north and south, and of west and east, termed her libration, she permits rather more than the half, that is to say, five-sevenths, to be seen.

As soon as the ignoramuses came to understand as much as the Director of the Observatory himself knew, they began to worry themselves regarding her revolution round the earth, whereupon twenty scientific reviews immediately came to the rescue. They pointed out to them then that the firmament, with its infinitude of stars, may be considered as one vast dial-plate, upon which the moon travels, indicating the true time to all the inhabitants of the earth; that it is during this movement that the Queen of Night exhibits her different phases; that the moon is full when she is in opposition with the sun, that is when the three bodies are on the same straight line, the earth occupying the centre; that she is new when she is in conjunction with the sun, that is, when she is between it and the earth; and lastly, that she is in her first or last quarter, when she makes with the sun and the earth an angle of which she herself occupies the apex.

Regarding the altitude which the moon attains above the horizon, the letter of the Cambridge Observatory had said all that was to be said in that respect. Every one knew that this altitude varies according to the latitude of the observer. But the only zones of the globe in which the moon passes the zenith, that is, the point directly over the head of the spectator, are of necessity comprised between the twenty-eighth parallels and the equator. Hence the importance of the advice to try the experiment upon some point of that part of the globe, in order that the projectile might be discharged perpendicularly, and so the soonest escape the action of gravitation. This was an essential condition to the success of the enterprise, and continued actively to engage the public attention.

Regarding the path described by the moon in her revolution round the earth, the Cambridge Observatory had demonstrated that this path is a re-entering curve, not a perfect circle, but an ellipse, of which the earth occupies one of the foci. It was also well understood that it is farthest removed from the earth during its apogee, and approaches most nearly to it at its perigee.

Such then was the extent of knowledge possessed by every American on the subject, and of which no one could decently profess ignorance. Still, while these true principles were being rapidly disseminated many errors and illusory fears proved less easy to eradicate.

For instance, some worthy persons maintained that the moon was an ancient comet which, in describing its elongated orbit round the sun, happened to pass near the earth, and became confined within her circle of attraction. These drawing-room astronomers professed so to explain the charred aspect of the moon – a disaster which they attributed to the intensity of the solar heat; only, on being reminded that comets have an atmosphere, and that the moon has little or none, they were fairly at a loss for a reply.

Others again, belonging to the doubting class expressed certain fears as to the position of the moon. They had heard it said that, according to observations made in the time of the Caliphs, her revolution had become accelerated in a certain degree. Hence they concluded, logically enough, that an acceleration of motion ought to be accompanied by a corresponding diminution in the distance separating the two bodies; and that, supposing the double effect to be continued to infinity, the moon would end by one day falling into the earth. However, they became reassured as to the fate of future generations on being apprised that, according to the calculations of Laplace, this acceleration of motion is confined within very restricted limits, and that a proportional diminution of speed will be certain to succeed it. So, then, the stability of the solar system would not be deranged in ages to come.

There remains but the third class, the superstitious. These worthies were not content merely to rest in ignorance; they must know all about things which had no existence whatever, and as to the moon, they had long known all about her. One set regarded her disc as a polished mirror, by means of which people could see each other from different points of the earth and interchange their thoughts. Another set pretended that out of one thousand new moons that had been observed, nine hundred and fifty had been attended with remarkable disturbances, such as cataclysms, revolutions, earthquakes, the deluge, &c. Then they believed in some mysterious influence exercised by her over human destinies – that every Selenite was attached to some inhabitant of the earth by a tie of sympathy; they maintained that the entire vital system is subject to her control, &c., &c. But in time the majority renounced these vulgar errors, and espoused the true side of the question. As for the Yankees, they had no other ambition than to take possession of this new continent of the sky, and to plant upon the summit of its highest elevation the star-spangled banner of the United States of America.

CHAPTER VII.
THE HYMN OF THE CANNON-BALL

The Observatory of Cambridge in its memorable letter had treated the question from a purely astronomical point of view. The mechanical part still remained.

President Barbicane had, without loss of time, nominated a Working Committee of the Gun Club. The duty of this Committee was to resolve the three grand questions of the cannon, the projectile, and the powder. It was composed of four members of great technical knowledge, Barbicane (with a casting vote in case of equality), General Morgan, Major Elphinstone, and J. T. Maston, to whom were confided the functions of secretary. On the 8th of October the Committee met at the house of President Barbicane, 3, Republican Street. The meeting was opened by the president himself.

"Gentlemen," said he, "we have to resolve one of the most important problems in the whole of the noble science of gunnery. It might appear, perhaps, the most logical course to devote our first meeting to the discussion of the engine to be employed. Nevertheless, after mature consideration, it has appeared to me that the question of the projectile must take precedence of that of the cannon, and that the dimensions of the latter must necessarily depend upon those of the former."

"Suffer me to say a word," here broke in J. T. Maston. Permission having been granted, "Gentlemen," said he, with an inspired accent, "our president is right in placing the question of the projectile above all others. The ball we are about to discharge at the moon is our ambassador to her, and I wish to consider it from a moral point of view. The cannon-ball, gentlemen, to my mind, is the most magnificent manifestation of human power. If Providence has created the stars and the planets, man has called the cannon-ball into existence. Let Providence claim the swiftness of electricity and of light, of the stars, the comets, and the planets, of wind and sound – we claim to have invented the swiftness of the cannon-ball, a hundred times superior to that of the swiftest horses or railway train. How glorious will be the moment when, infinitely exceeding all hitherto attained velocities, we shall launch our new projectile with the rapidity of seven miles a second! Shall it not, gentlemen – shall it not be received up there with the honours due to a terrestrial ambassador?"

Overcome with emotion the orator sat down and applied himself to a huge plate of sandwiches before him.

"And now," said Barbicane, "let us quit the domain of poetry and come direct to the question."

"By all means," replied the members, each with his mouth full of sandwich.

"The problem before us," continued the president, "is how to communicate to a projectile a velocity of 12,000 yards per second. Let us at present examine the velocities hitherto attained. General Morgan will be able to enlighten us on this point."

"And the more easily," replied the general, "that during the war I was a member of the Committee of experiments. I may say, then, that the 100-pounder Dahlgrens, which carried a distance of 5000 yards, impressed upon their projectile an initial velocity of 500 yards a second. The Rodman Columbiad threw a shot weighing half a ton a distance of six miles, with a velocity of 800 yards per second – a result which Armstrong and Palisser have never obtained in England."

"This," replied Barbicane, "is, I believe, the maximum velocity ever attained?"

"It is so," replied the general.

"Ah!" groaned J. T. Maston, "if my mortar had not burst – "

"Yes," quietly replied Barbicane, "but it did burst. We must take, then, for our starting-point this velocity of 800 yards. We must increase it twenty-fold. Now, reserving for another discussion the means of producing this velocity, I will call your attention to the dimensions which it will be proper to assign to the shot. You understand that we have nothing to do here with projectiles weighing at most but half a ton."

"Why not?" demanded the major.

"Because the shot," quickly replied J. T. Maston, "must be big enough to attract the attention of the inhabitants of the moon, if there are any?"

"Yes," replied Barbicane, "and for another reason more important still."

"What mean you?" asked the major.

"I mean that it is not enough to discharge a projectile, and then take no further notice of it; we must follow it throughout its course, up to the moment when it shall reach its goal."

"What?" shouted the general and the major in great surprise.

"Undoubtedly," replied Barbicane composedly, "or our experiment would produce no result."

"But then," replied the major, "you will have to give this projectile enormous dimensions."

"No! Be so good as to listen. You know that optical instruments have acquired great perfection; with certain telescopes we have succeeded in obtaining enlargements of 6000 times and reducing the moon to within forty miles' distance. Now, at this distance, any objects sixty feet square would be perfectly visible. If, then, the penetrative power of telescopes has not been further increased, it is because that power detracts from their light; and the moon, which is but a reflecting mirror, does not give back sufficient light to enable us to perceive objects of lesser magnitude."

"Well, then, what do you propose to do?" asked the general. "Would you give your projectile a diameter of sixty feet?"

"Not so."

"Do you intend, then, to increase the luminous power of the moon?"

"Exactly so. If I can succeed in diminishing the density of the atmosphere through which the moon's light has to travel I shall have rendered her light more intense. To effect that object it will be enough to establish a telescope on some elevated mountain. That is what we will do."

"I give it up," answered the major. "You have such a way of simplifying things. And what enlargement do you expect to obtain in this way?"

"One of 48,000 times, which should bring the moon within an apparent distance of five miles; and, in order to be visible, objects need not have a diameter of more than nine feet."

"So, then," cried J. T. Maston, "our projectile need not be more than nine feet in diameter."

"Let me observe, however," interrupted Major Elphinstone, "this will involve a weight such as – "

"My dear major," replied Barbicane, "before discussing its weight, permit me to enumerate some of the marvels which our ancestors have achieved in this respect. I don't mean to pretend that the science of gunnery has not advanced, but it is as well to bear in mind that during the middle ages they obtained results more surprising, I will venture to say, than ours. For instance, during the siege of Constantinople by Mahomet II., in 1453, stone shot of 1900 lbs. weight were employed. At Malta, in the time of the knights, there was a gun of the fortress of St. Elmo which threw a projectile weighing 2500 lbs. And, now, what is the extent of what we have seen ourselves? Armstrong guns discharging shot of 500 lbs., and the Rodman guns projectiles of half a ton! It seems, then, that if projectiles have gained in range, they have lost far more in weight. Now, if we turn our efforts in that direction, we ought to arrive, with the progress of science, at ten times the weight of the shot of Mahomet II. and the Knights of Malta."

"Clearly," replied the major; "but what metal do you calculate upon employing?"

"Simply cast iron," said General Morgan.

"But," interrupted the major, "since the weight of a shot is proportionate to its volume, an iron ball of nine feet in diameter would be of tremendous weight."

"Yes, if it were solid, not if it were hollow."

"Hollow? then it would be a shell?"

"Yes, a shell," replied Barbicane; "decidedly it must be. A solid shot of 108 inches would weigh more than 200,000 lbs., a weight evidently far too great. Still, as we must reserve a certain stability for our projectile, I propose to give it a weight of 20,000 lbs."

"What, then, will be the thickness of the sides?" asked the major.

"If we follow the usual proportion," replied Morgan, "a diameter of 108 inches would require sides of two feet thickness, or less."

"That would be too much," replied Barbicane; "for you will observe that the question is not that of a shot intended to pierce an iron plate: it will suffice, therefore, to give it sides strong enough to resist the pressure of the gas. The problem, therefore, is this – What thickness ought a cast-iron shell to have in order not to weigh more than 20,000 lbs.? Our clever secretary will soon enlighten us upon this point."

"Nothing easier," replied the worthy secretary of the Committee; and, rapidly tracing a few algebraical formulæ upon paper, among which n² and x² frequently appeared, he presently said, —

"The sides will require a thickness of less than two inches."

"Will that be enough?" asked the major doubtfully.

"Clearly not!" replied the president.

"What is to be done, then?" said Elphinstone, with a puzzled air.

"Employ another metal instead of iron."

"Copper?" said Morgan.

"No; that would be too heavy. I have better than that to offer."

"What then?" asked the major.

"Aluminium!" replied Barbicane.

"Aluminium?" cried his three colleagues in chorus.

"Unquestionably, my friends. This valuable metal possesses the whiteness of silver, the indestructibility of gold, the tenacity of iron, the fusibility of copper, the lightness of glass. It is easily wrought, is very widely distributed, forming the base of most of the rocks, is three times lighter than iron, and seems to have been created for the express purpose of furnishing us with the material for our projectile."

"But, my dear president," said the major, "is not the cost price of aluminium extremely high?"

"It was so at its first discovery, but it has fallen now to nine dollars the pound."

"But still, nine dollars the pound!" replied the major, who was not willing readily to give in; "even that is an enormous price."

"Undoubtedly, my dear major; but not beyond our reach."

"What will the projectile weigh then?" asked Morgan.

"Here is the result of my calculations," replied Barbicane. "A shot of 108 inches in diameter, and 12 inches in thickness, would weigh, in cast-iron, 67,440 lbs.; cast in aluminium, its weight will be reduced to 19,250 lbs."

"Capital!" cried the major; "but do you know that, at nine dollars the pound, this projectile will cost – "

"One hundred and seventy-three thousand and fifty dollars ($173,050). I know it quite well. But fear not, my friends; the money will not be wanting for our enterprise, I will answer for it. Now what say you to aluminium, gentlemen?"

"Adopted!" replied the three members of the Committee. So ended the first meeting. The question of the projectile was definitively settled.

CHAPTER VIII.
HISTORY OF THE CANNON

The resolutions passed at the last meeting produced a great effect out of doors. Timid people took fright at the idea of a shot weighing 20,000 lbs. being launched into space; they asked what cannon could ever transmit a sufficient velocity to such a mighty mass. The minutes of the second meeting were destined triumphantly to answer such questions. The following evening the discussion was renewed.

"My dear colleagues," said Barbicane, without further preamble, "the subject now before us is the construction of the engine, its length, its composition, and its weight. It is probable that we shall end by giving it gigantic dimensions; but however great may be the difficulties in the way, our mechanical genius will readily surmount them. Be good enough, then, to give me your attention, and do not hesitate to make objections at the close. I have no fear of them. The problem before us is how to communicate an initial force of 12,000 yards per second to a shell of 108 inches in diameter, weighing 20,000 lbs. Now when a projectile is launched into space, what happens to it? It is acted upon by three independent forces, the resistance of the air, the attraction of the earth, and the force of impulsion with which it is endowed. Let us examine these three forces. The resistance of the air is of little importance. The atmosphere of the earth does not exceed forty miles. Now, with the given rapidity, the projectile will have traversed this in five seconds, and the period is too brief for the resistance of the medium to be regarded otherwise than as insignificant. Proceeding, then, to the attraction of the earth, that is, the weight of the shell, we know that this weight will diminish in the inverse ratio of the square of the distance. When a body left to itself falls to the surface of the earth, it falls five feet in the first second; and if the same body were removed 257,542 miles farther off, in other words, to the distance of the moon, its fall would be reduced to about half a line in the first second. That is almost equivalent to a state of perfect rest. Our business, then, is to overcome progressively this action of gravitation. The mode of accomplishing that is by the force of impulsion."

"There's the difficulty," broke in the major.

"True," replied the president; "but we will overcome that, for this force of impulsion will depend upon the length of the engine and the powder employed, the latter being limited only by the resisting power of the former. Our business, then, to-day is with the dimensions of the cannon."

"Now, up to the present time," said Barbicane, "our longest guns have not exceeded twenty-five feet in length. We shall therefore astonish the world by the dimensions we shall be obliged to adopt. It must evidently be, then, a gun of great range, since the length of the piece will increase the detention of the gas accumulated behind the projectile; but there is no advantage in passing certain limits."

"Quite so," said the major. "What is the rule in such a case?"

"Ordinarily the length of a gun is 20 to 25 times the diameter of the shot, and its weight 235 to 240 times that of the shot."

"That is not enough," cried J. T. Maston impetuously.

"I agree with you, my good friend; and, in fact, following this proportion for a projectile nine feet in diameter, weighing 30,000 lbs., the gun would only have a length of 225 feet, and a weight of 7,200,000 lbs."

"Ridiculous!" rejoined Maston. "As well take a pistol."

"I think so too," replied Barbicane; "that is why I propose to quadruple that length, and to construct a gun of 900 feet."

The general and the major offered some objections; nevertheless, the proposition, actively supported by the secretary, was definitively adopted.

"But," said Elphinstone, "what thickness must we give it?"

"A thickness of six feet," replied Barbicane.

"You surely don't think of mounting a mass like that upon a carriage?" asked the major.

"It would be a superb idea, though," said Maston.

"But impracticable," replied Barbicane. "No; I think of sinking this engine in the earth alone, binding it with hoops of wrought iron, and finally surrounding it with a thick mass of masonry of stone and cement. The piece once cast, it must be bored with great precision, so as to preclude any possible windage. So there will be no loss whatever of gas, and all the expansive force of the powder will be employed in the propulsion."

"One simple question," said Elphinstone: "is our gun to be rifled?"

"No, certainly not," replied Barbicane; "we require an enormous initial velocity; and you are well aware that a shot quits a rifled gun less rapidly than it does a smooth-bore."

"True," rejoined the major.

The Committee here adjourned for a few minutes to tea and sandwiches.

On the discussion being renewed, "Gentlemen," said Barbicane, "we must now take into consideration the metal to be employed. Our cannon must be possessed of great tenacity, great hardness, be infusible by heat, indissoluble, and inoxydable by the corrosive action of acids."

"There is no doubt about that," replied the major; "and as we shall have to employ an immense quantity of metal, we shall not be at a loss for choice."

"Well, then," said Morgan, "I propose the best alloy hitherto known, which consists of 100 parts of copper, 12 of tin, and 6 of brass."

"I admit," replied the president, "that this composition has yielded excellent results, but in the present case it would be too expensive, and very difficult to work. I think, then, that we ought to adopt a material excellent in its way and of low price, such as cast iron. What is your advice, major?"

"I quite agree with you," replied Elphinstone.

"In fact," continued Barbicane, "cast iron cost ten times less than bronze; it is easy to cast, it runs readily from the moulds of sand, it is easy of manipulation, it is at once economical of money and of time. In addition, it is excellent as a material, and I well remember that during the war, at the siege of Atlanta, some iron guns fired one thousand rounds at intervals of twenty minutes without injury."

"Cast iron is very brittle, though," replied Morgan.

"Yes, but it possesses great resistance. I will now ask our worthy secretary to calculate the weight of a cast-iron gun with a bore of nine feet and a thickness of six feet of metal."

"In a moment," replied Maston. Then, dashing off some algebraical formulæ with marvellous facility, in a minute or two he declared the following result: —

"The cannon will weigh 68,040 tons. And, at two cents a pound, it will cost – ?"

"2,510,701 dollars."

Maston, the major, and the general regarded Barbicane with uneasy looks.

"Well, gentlemen," replied the president, "I repeat what I said yesterday. Make yourselves easy; the millions will not be wanting."

With this assurance of their president the Committee separated, after having fixed their third meeting for the following evening.

Türler ve etiketler

Yaş sınırı:
12+
Litres'teki yayın tarihi:
02 mayıs 2017
Hacim:
340 s. 1 illüstrasyon
Telif hakkı:
Public Domain
İndirme biçimi:

Bu kitabı okuyanlar şunları da okudu