Жизнь и идеи Бруно Понтекорво

Abonelik
0
Yorumlar
Parçayı oku
Okundu olarak işaretle
Yazı tipi:Aa'dan küçükDaha fazla Aa

История открытия замедления нейтронов преподала еще один важный урок: это открытие стало одним из первых примеров практического применения ядерной физики. Дело в том, что когда Ферми рассказал директору Института Физики Орсо Марио Корбино о новом эффекте, тот предложил немедленно его запатентовать. Бруно пишет [20]: «И сейчас не могу забыть искреннего, сердечного, детского смеха Ферми при намеке Корбино на то, что работы, о которых шла речь, могли иметь практическое значение».

Однако прав оказался именно директор Корбино, а не гениальный физик Ферми. Замедление нейтронов, которое усиливало наведенную радиоактивность в сотни раз, имело огромное значение для практических применений. Именно этот эффект сейчас работает в ядерных реакторах для получения электричества, используется в приборах нейтронного каротажа для поиска нефти, играет ключевую роль для ядерных вооружений. Простенькие настольные эксперименты физиков в прямом смысле изменили историю человечества, поскольку эффект, открытый в этих опытах, позволил через несколько лет создать атомную бомбу.

Бруно в своих статьях потом не раз приводил открытие замедления нейтронов как пример того, что фундаментальные исследования обязательно дадут важные практические применения.

Необходимо подчеркнуть, что Бруно не просто обнаружил эффект «кастеллетто», но и принял самое активное участие в изучении феномена замедления нейтронов. За 1934–1935 г. он стал соавтором семи статей по этой теме. Дотошные историки обратили внимание, что если в ключевой работе [17] первым автором значится Ферми, в последующих авторы идут по алфавиту, то потом появляется статья, где есть только один автор – Б. Понтекорво [22]. Это очень любопытное свидетельство о нравах внутри научного коллектива тех лет. Считается, что коллектив Ферми был прообразом современной экспериментальной группы. То есть впервые люди разных профессий и склонностей – химики, физики-экспериментаторы и физики-теоретики – объединились для решения одной научной проблемы. Обычно каждая статья подписывается всеми участниками коллаборации. В группе Ферми было два полных профессора, а Бруно тогда имел статус временного ассистента (что-то вроде современного лаборанта), и в группе его звали Il Cucciolo, что в мягком переводе означает – Малыш, в жестком – Щенок. Часто вам приходилось сталкиваться с тем, чтобы профессора давали лаборанту («щенку») единолично публиковать работу, выполненную по их теме и на их оборудовании?

Вообще, опыты по искусственной радиоактивности и их результаты были неожиданны не только для физической общественности, но и для самого Ферми. Понтекорво в своих лекциях вспоминал, что в 1934 г. Ферми считал, что физика закончена, ничего интересного открыто больше не будет и осталось только сделать несколько скучных расчетов [23]. Тема «конца физики» или «конца экспериментальной физики высоких энергий» время от времени возникает, и поэтому интересно, как к этому относился Бруно:

«Даже сейчас есть люди, которые говорят что-то подобное, говорят о какой-то пустыне области высоких энергий, где ничего нового произойти не может. Но я не верю в это. Я не верю в то, что исчезнут физические проблемы. И не поверю, даже если увижу»[23].

Итак, вместо ожидавшегося «конца физики», в 1934 г. были сделаны неожиданные открытия, которые дали человечеству ядерную энергию, а Ферми в 1938 г. получил Нобелевскую премию.

Любопытно, что экспериментаторы группы Ферми могли сделать еще одно выдающееся открытие – увидеть деление урана. В 1935 г. они облучали медленными нейтронами уран с парафином и без него. Хотели проверить, вызывает ли такое облучение испускание альфа-частиц с высокой энергией. Поскольку уран сам по себе излучает альфа-частицы с небольшой энергией, чтобы убрать этот фон, перед счетчиком ставили алюминиевую фольгу. Она должна была давить фон, но в результате подавила новый физический эффект: осколки деления не могли пройти через эту фольгу. Если бы ее не было, то ядра-осколки давали бы сильные импульсы ионизации. Четыре года спустя Отто Ган и Фриц Штрассман заявили об обнаружении деления урана, точно так же облучая уран медленными нейтронами. Бруно, вспоминая об этом эпизоде, пишет [10]:

«Не раз в 1939 г. и позже сотрудники Ферми обсуждали случай со “зловредной” алюминиевой фольгой и задумывались над вопросом: “Допустим, что мы в 1935 г. наблюдали большие импульсы ионизации от урана: сумел бы Ферми понять явление, т. е. открыть деление?”».

Сейчас на виа Панисперна, 10 находится некоторое полицейское учреждение (https://t.me/bruno_pontecorvo_photo/4), вход с улицы преграждает решетка, и посмотреть знаменитый фонтан, где был выполнен эксперимент Ферми, не удается.

Когда мы снимали фильм о Бруно Понтекорво и приехали на улицу Панисперна, то долго не могли найти этот дом. Тогда стали спрашивать у нескольких владельцев местных магазинчиков и кафе, где находится Институт Ферми. К нашему удивлению, все они знали, кто такой Ферми, и четко направляли нас в правильное место.

4. Работа с Жолио-Кюри

Работая с Жолио, невозможно было не быть его другом…

Б. Понтекорво

За свои исследования с нейтронами Бруно получил грант от Министерства образования для проведения исследований за рубежом и 29 февраля 1936 г. приехал в Париж для работы в Институте радия. Он остановился на площади Пантеона в уютном отеле c симпатичным названием Des Grands Hommes[6]. Этот отель был знаменит тем, что в нем Андре Бретон и Филипп Супо в 1919 г. обнародовали манифест сюрреалистов с интересным названием «Магнитные поля».

Рис. 4–1. Отель Des Grands Hommes (фото автора).


Институт радия, в котором предстояло работать Бруно, располагался совсем рядом с отелем. Руководили им Фредерик Жолио и его жена Ирен Кюри. Знакомство с Жолио сыграло очень большую роль в жизни Бруно. Он считал Жолио своим вторым учителем, после Ферми.

В архиве Бруно сохранился текст его выступления, посвященного 75-летию Жолио-Кюри [24]. Он выделяет два качества Жолио как ученого:

«…могучая научная фантазия и, как говорят итальянцы, spreguidicatezza (беспринципность) – способность признавать возможным даже самый невероятный и странный факт. Именно благодаря этим качествам Фредерику Жолио в сотрудничестве с Ирен Кюри, критический ум которой иногда служил здоровым антиподом энтузиазму мужа, удалось открыть явление искусственной радиоактивности (отмеченное Нобелевской премией), несмотря на то, что в их распоряжении имелись менее значительные экспериментальные средства, чем те, которыми располагали ученые Америки и Англии. Можно даже сказать, что в Америке и Англии явление искусственной радиоактивности наверняка наблюдалось, но не было открыто из-за отсутствия этой способности, которой обладал Жолио, – считать возможным самое невероятное».

Я думаю, что Бруно не случайно выделяет эту важную особенность физика-экспериментатора – непредвзятость, способность считать возможным самое невероятное. И, как следствие, с уважением и вниманием относиться к любым экспериментальным результатам. Особенно если они не сходятся с твоими ожиданиями. История с зависимостью результата от стола, на котором проводились измерения, стала хорошим уроком для молодого ученого. Нобелевское открытие было сделано именно благодаря внимательному отношению и желанию разобраться в любых мелочах поведения экспериментальной установки. Общение с Жолио закрепило эту практику. В дальнейшем мы увидим много проявлений этого качества Бруно. И в истории с первым нейтринным экспериментом в СССР, и в ситуации с реакциями Понтекорво.

Что касается человеческих качеств, то Бруно отмечает: «Одной из самых замечательных черт Жолио был какой-то изумительный дар поднимать дух каждого, кто обращался к нему: даже самые обескураженные неудачами сотрудники после разговора с Жолио уходили от него уверенными и полными надежд. Жолио завоевывал сердце всех, кто работал с ним. Как-то я заболел оттого, что вдохнул пары ртути во время одного из опытов, проводимых в лаборатории. Жолио добился того, чтобы меня лечили в знаменитом институте Пастера, куда не так легко попасть» [24].

Жолио любил спорт, горные лыжи, рыбную ловлю, парусные гонки. Один из его сотрудников открыл школу джиу-джитсу. Чтобы помочь ему привлечь клиентов, Жолио стал тоже заниматься джиу-джитсу. Сразу же пошли рекламные статьи и фотографии, что лауреат Нобелевской премии не мог бы никогда чувствовать себя в такой превосходной форме, если бы не занимался джиу-джитсу.

Очень любил теннис. «Играл он хорошо – на уровне примерно советских игроков первого разряда. Надо сказать, что и к этому виду спорта он относился весьма ревниво, и ему совсем не нравилось проигрывать…» [24] – Бруно тактично умалчивает, кому проигрывал Жолио.


«Семья Жолио-Кюри была необычайно простой, приветливой, исключительно дружной, хотя (а может быть, как раз потому что) Фредерик и Ирен были очень разные по характеру люди. Она – застенчивая, немногословная, он – мастер рассказывать разные истории, не прочь «послушать себя», типичный француз. Мне приходит на память такая сцена. На одном из семинаров в лаборатории Жолио его жена Ирен сидит рядом с ним, обеспокоенная здоровьем мужа, который непрерывно курит. Она несколько раз выхватывает у него изо рта сигарету и выбрасывает ее, а он как будто невозмутимо закуривает новую. Это продолжается до тех пор, пока Фредерик, полный гнева, не пересаживается на другое место» [24].

 

В 1990 году Бруно дал интервью итальянскому историку науки Р. Вергара Каффарелли, в котором он сравнивает Жолио-Кюри с Ферми [25].

«Жолио-Кюри сильно отличался от Ферми – но не пишете об этом – как физик он был значительно слабее, но это был человек, который заражал энтузиазмом молодежь, чем Ферми особо не занимался».

В этой маленькой ремарке – «но не пишите об этом» – тоже отражается характер Бруно. Он был исключительно тактичным и (почти забытое сейчас слово) благородным человеком. Однако Каффарелли все равно привел эту характеристику Жолио в полном объеме.

5. Изомерия

После того как в 1935 г. Жолио получил Нобелевскую премию по химии, он открыл кафедру ядерной химии в Коллеж де Франс. В новую лабораторию он набрал сотрудников из разных стран, включая австрийца Ханса фон Халбана, русского Льва (Лео) Коварского, а также французов Пьера Оже и Бертрана Голдшмидта. Эти коллеги Бруно в будущем сыграют большую роль в его жизни. С началом Второй мировой войны они разлучатся, судьба сведет их вместе через несколько лет по другую сторону Атлантического океана, в Канаде. Однако в 1936 г. они работают в одной лаборатории, но над разными проблемами: группа Жолио интенсивно занимается экспериментами для создания атомной бомбы, а Бруно получает от Жолио тему по ядерной изомерии – чисто фундаментальную задачу ядерной физики. Впоследствии Бруно не раз говорил журналистам, что он никогда не работал над атомной бомбой: ни на Западе, ни на Востоке, ни в Китае. И во Франции он действительно не занимался этой проблематикой. Это делали его коллеги.

Сейчас сочетание «радиоактивные изотопы» стало нам привычным, школа должна была нас научить, что изотопы – это ядра с одинаковым зарядом, то есть с одинаковым числом протонов, но с разным числом нейтронов. Массы изотопов – разные. А есть еще изомеры – ядра с одинаковой массой, у них одинаковое число и протонов, и нейтронов. Удивительно, что тем не менее ядерные системы с одинаковым число протонов и нейтронов могут отличаться друг от друга. Например, иметь разные периоды радиоактивного распада или существенно разное время жизни.

Один из первых изомеров был открыт группой И. В. Курчатова в Ленинграде. Курчатов вслед за Жолио-Кюри и Ферми изучал искусственную радиоактивность, наводимую нейтронами в разных веществах. В 1935 г. он обнаружил, что при облучении 79Br нейтронами образуется изотоп 80Br, имеющий два периода полураспада 17,7 минуты и 4,4 часа, что соответствовало бета-распадам из основного и изомерного состояния. Но почему ядра с одинаковым набором протонов и нейтронов ведут себя по-разному – это оставалось загадкой.

Для объяснения феномена изомерии в 1936 г. К. Вайцзеккер предположил, что ядра-изомеры образуются в разных энергетических состояниях: одно – в основном, а другое – в возбужденном. Если угловые моменты основного и возбужденного состояния сильно отличаются (на несколько единиц), то переход из возбужденного состояния в основное путем излучения γ-квантов оказывается сильно подавленным. Поэтому радиоактивный бета-распад происходит либо из основного состояния с одной вероятностью, либо из возбужденного состояния – с другой вероятностью. Поэтому мы видим испускание электронов с двумя различными временами полураспада.

Для подтверждения этой гипотезы не хватало одного: надо было бы напрямую обнаружить переходы из возбужденного состояния в основное. То есть увидеть γ-кванты с фиксированной энергией перехода. Основная трудность состояла в том, что вероятность таких переходов была достаточно мала.

Как бы стал решать эту задачу среднестатистический экспериментатор? Вероятность гамма-перехода мала – значит, надо взять больше гамма-детекторов, увеличить время набора статистики и т. д. Бруно же решил эту задачу парадоксально: не надо смотреть за гамма-квантами! Надо искать электроны внутренней конверсии.

Дело в том, что переход ядра из возбужденного состояния в основное может осуществляться не только за счет испускания γ-кванта. Энергия перехода может передаваться непосредственно электрону атомной оболочки. В результате этого явления испускается не γ-квант, а так называемый конверсионный электрон, кинетическая энергия которого равна разности между энергией ядерного возбужденного состояния перехода и энергией связи электрона на той оболочке, с которой он был испущен.

Понтекорво предположил, что при сравнительно малых энергиях перехода вероятнее будет испускание не γ-кванта, а электронов внутренней конверсии. Если это так, то должны наблюдаться электроны с четко фиксированной энергией. Обычный бета-распад – это испускание электрона с некоторым непрерывным спектром. Бруно же предсказал, что в энергетическом спектре электронов от изомеров должны наблюдаться узкие линии. Он сделал это в своем выступлении на Международном конгрессе, организованном Жолио в 1937 г. в Palais de la Decouverte в Париже [26]. Интересно, что независимо от Понтекорво к такой же идее пришел и И. В. Курчатов.

Для экспериментальной проверки своей гипотезы Бруно выбрал изотоп родия 104Rh. Причина, как писал Бруно [27], состояла в том, что с образцом родия он набегал более 100 километров по коридорам на виа Панисперна и хорошо знал, что при облучении медленными нейтронами у родия появляются две активности с периодами полураспада в 44 секунды и 4,2 минуты. В группе Ферми активность родия с периодом полураспада в 44 секунды использовали как индикатор активности, наведенной за счет облучения медленными нейтронами. Бруно верил, что появление двух активностей – это признак изомерии. Эксперименты, сделанные на простой аппаратуре – радон-бериллиевый источник нейтронов, тонкая родиевая мишень и тонкостенный счетчик Гейгера – Мюллера – подтвердили это предположение.

Примечательно, что счетчики Бруно делал сам. Об этом в своих воспоминаниях пишет З. В. Ершова[7], которую в 1935 г. советское правительство послало в лабораторию Кюри на стажировку [28]. Она вспоминает, как встретила там Понтекорво и он подарил ей счетчик Гейгера – Мюллера собственного изготовления.

Другое замечательное открытие Бруно – существование ядер-изомеров, стабильных относительно бета-распада. В обычном бета-распаде из ядра вылетает электрон, а в распадах таких изомеров испускаются не электроны, а гамма-кванты. Жолио назвал это явление «ядерной фосфоресценцией». Обычная фосфоресценция состоит в том, что некоторые вещества после облучения их светом начинают светиться. Происходит это из-за того, что световое облучение переводит электроны атома на высшие энергетические уровни, а снятие возбуждения идет через различные метастабильные состояния с большим временем жизни. То есть высвечивание может длиться довольно долго. Ровно такой же эффект возникает у изомеров после облучения нейтронами или гамма-квантами, у них снятие возбуждения может происходить через попадание в метастабильное состояние с большим временем жизни. Вещество начинает после возбуждения светиться в диапазоне жестких гамма-квантов, причем такое высвечивание может тоже длиться долго и по ядерным, и по обычным временам. Бруно увидел это явление облучая 115In рентгеновскими квантами с энергией 3 МэВ. Типичное время жизни ядерного возбуждения составляет 10-12 – 10-17 секунды, а в индии период полураспада возбужденного состояния оказался 4,5 часа!


Такой красивый эффект понравился Ферми. Он прислал поздравление с интересным результатом, чему Бруно очень обрадовался. До этого у него было подозрение, что он интересен Ферми только как партнер по теннису [8].

Важное замечание сделал биограф Бруно Дж. Фидекаро [29]. Он говорил, что в Риме Бруно был учеником, а работа в Париже сделала его настоящим ученым. Конечно, роль Бруно в открытии эффекта замедления нейтронов значительна. Но все-таки тогда он был начинающим физиком, который хорошо справился с порученной задачей, – увидел необычный инструментальный эффект и не прошел мимо. Однако работы по изомерии – это проверка своих собственных физических идей. Можно сказать, что как самостоятельный ученый Понтекорво начался именно с работ по изомерии. Причем тут сразу проявилась особенность его таланта: он не только выдвигал идеи, но и проверял их экспериментально.

Впоследствии в своей автобиографии [8] Бруно с гордостью писал:

«Я предсказал существование стабильных (относительно бета-радиоактивности) ядерных изомеров и экспериментально нашел (1938 г.) первый пример: кадмий, возбужденный быстрыми нейтронами. Я предсказал, что переходы между изомерами в общем должны иметь очень большие коэффициенты внутренней конверсии, и независимо, но несколько раньше Г. Сиборга и Э. Сегре занялся поиском и нашел (1938 г.) на примере родия, а также в других случаях радиоактивные ядра нового типа, в том смысле, что они распадаются, испуская монохроматическую линию электронов вместо обычного непрерывного бета-спектра. Наконец, совместно с А. Лазардом мне удалось получить (1939 г) бета-стабильные изомеры (115In* и другие) путем облучения стабильных ядер непрерывным спектром рентгеновского излучения высокой энергии (3 МэВ)».

Чувствуется, как в этих строках сквозит законная гордость выполненной работой.

Надо сказать, что, как и в случае открытия замедления нейтронов, Бруно повезло стоять у истоков целого научного направления. Он обнаружил только несколько самых первых изомеров, сейчас число таких ядер исчисляется десятками тысяч. Обнаружены изомеры, чей возраст даже превышает возраст Вселенной!

Как мы увидим при дальнейшем рассказе о научной биографии Понтекорво, штамп «повезло стоять у истоков» придется употреблять много раз. Где-то, действительно, был элемент случайности (история с замедлением нейтронов), но, в основном, это следствие оригинальности мышления Бруно как физика.

Несколько слов про источник рентгеновского излучения 3 МэВ. Бруно работал в лаборатории, которая находилась в пригороде Парижа Иври. Жолио трансформировал ее из заброшенной фабрики. Там был собран передовой для своего времени ускоритель – импульсный генератор Ван де Граафа. В отличие от лабораторных опытов на столе в Риме, Бруно впервые столкнулся с аппаратурой, на которой, как он писал [27], можно было даже отрабатывать альпинистские навыки. Бруно говорил, что вся обстановка в Иври сильно напоминала декорации фантастического фильма. От генератора летели двухметровые молнии, и каждый импульс сопровождался жутким грохотом [27]. Видно, что с техникой безопасности у Жолио были явные проблемы.

За работы по ядерным изомерам Бруно получил премию Кюри – Карнеги, и это позволило ему оставаться в лаборатории Жолио до 1940 г.

6. Антисемитские законы Муссолини

Официально с 1934 г. Понтекорво числился ассистентом в Институте физики Королевского университета в Риме. Это была временная позиция, которая каждый год возобновлялась. В мае 1937 г. ее решено было перевести в разряд постоянных позиций, и был объявлен конкурс на замещение должности [14]. У Бруно возник реальный шанс получить постоянное место работы. Но для этого ему надо было вернуться в Италию Муссолини. В самый разгар торжества фашизма. Наверное, это был его первый сложный жизненный выбор, который он сделал, сообразуясь со своими политическими убеждениями, – Бруно не стал участвовать в конкурсе, не поехал в Рим и остался с временным контрактом, но в свободном Париже. Жизнь показала, что он поступил правильно.

14 июля 1938 г. правительством Муссолини был принят расистский антисемитский закон. Он запрещал евреям занимать любые государственные должности, например, преподавать в школах или в университетах. Запрещались смешанные браки. Евреям нельзя было иметь компании, в которых больше 100 сотрудников.

В свидетельстве о рождении Бруно появляется позорный штамп «Razza ebraicа» (https://t.me/bruno_pontecorvo_photo/6).

Эти антисемитские законы привели к сильнейшим последствиям для семьи Понтекорво. Все взрослые дети Массимо эмигрировали. Гвидо уехал в Эдинбург заниматься биологией. Вместе с ним в Англию эмигрировали Джованни, Лаура и Анна. Паоло уехал в США заниматься инженерной деятельностью. Джулиана вместе со своим мужем Дуччио Табетом эмигрировала в Швейцарию. Поскольку государственные заказы перестали поступать, отец Бруно вынужден был продать фабрику венецианскому негоцианту Марзотто. Родители Бруно переехали в Милан.

 

Для Бруно стало ясно, что его выбор в 1937 г. был правильным. Возврат в Италию не дал бы ему никаких перспектив, тем более что Ферми тоже эмигрировал в США. Бруно остался в Париже, где позже к нему присоединился брат Джилло.

6Великие Люди (фр.)
7З. В. Ершова – «русская мадам Кюри», выдающийся советский радиохимик, активная участница атомного проекта СССР, наладила производство металлического урана.