Kitabı oku: «Космические сыщики», sayfa 3
Камертон – металлический инструмент в виде двузубой вилки для воспроизведения определённой частоты звука. Камертон изобрёл английский музыкант Джон Шор в 1711 году.
Уильям Хаггинс (1824–1910) – видный английский астроном, первым измеривший спектры многих космических объектов. Президент Королевского общества в 1900–1905 годах.
Маргарет Хаггинс (1848–1915) – ирландский астроном-спектроскопист, супруга Уильяма Хаггинса.
Кошачий Глаз – туманность в созвездии Дракона на расстоянии 3300 световых лет от Земли. Образована взрывом звезды 1000 лет назад (начало расширения для земного наблюдателя; в реальности взрыв произошёл 3300 + 1000 = 4300 лет назад).
Туманность Андромеды – ближайшая к нашей Галактике спиральная галактика. Движется к нам со скоростью 110 км в секунду и столкнётся с Млечным Путём через 4 миллиарда лет. Только не надо паниковать – время у нас ещё есть!
Сказка о первом радиоприёмнике и физике Герце
За семейным столом сидел новый гость – высокий мужчина со спокойным лицом. Галатея выждала удобную минуту и спросила его:
– Дядя Джерри, а вы знаете какую-нибудь сказку?
Джерри усмехнулся и сказал:
– Я наслышан про коварные обычаи этого дома: кто сюда войдёт, без сказки живым не выйдет. Причем сказки нужны не обычные волшебные, а особенные – научные.
Галатея, как истинная принцесса, уверенно воскликнула:
– Тогда вы наверняка приготовили какую-нибудь историю! Вы же хотите выйти отсюда живым!
Джерри кивнул:
– Я готов рассказать вам историю про первый радиоприёмник. Кто-нибудь знает, как он был устроен?
Галатея заерзала:
– Ой… радиотехника – это так сложно!
Дзинтара сказала одобрительно:
– Правильно, Джерри, заставь этих шалопаев шевелить мозгами!
Старший, Андрей, нахмурился и сказал:
– Первые приёмники были на специальных радиолампах. Их так и называли – ламповые приёмники.
Джерри покачал головой:
– Нет, первый радиоприёмник возник гораздо раньше радиоламп. Он выглядел… он выглядел как… чем объяснять, я его лучше соберу.
Мужчина порылся в карманах, достал кусок проволоки и пару металлических бусин. Он надел бусины на концы проволоки и согнул её кольцом – так, чтобы бусины располагались близко друг к другу, но не соприкасались.
– Вот таким был первый радиоприёмник в мире!
Галатея широко раскрыла глаза:
– И это всё? Ни транзисторов, ни этих конди… конденсаторов… ничего такого?
Андрей удивлённо спросил:
– И как же он работал без динамиков?
Галатея поддержала брата:
– Да, как этот приёмник пел и разговаривал?
Джерри усмехнулся:
– Этот радиоприёмник не пел, а искрил. Когда он ловил радиоволну, в контуре-кольце возникал электрический ток, и между этими близкими шариками проскакивала искра.
Галатея удивлённо протянула:
– Оказывается, радиотехника – это просто! Первым радиоприёмником был радиоискрильник…
Андрей спросил:
– А каким же тогда был первый радиопередатчик?
– Он был посложнее – в нём имелась батарея, пара катушек и конденсатор. При генерации радиоволны он тоже создавал искру между двумя более крупными шарами, включёнными в электрическую цепь. На радиоприёмнике, не связанном проводами с передатчиком, возникала искра в тот же момент, что и на передатчике. Это означало, что между ними возникла беспроводная связь, или радиосвязь.
– Всё-таки обычно радиоприёмники поют или говорят… – не унималась Галатея.
– Дальнейшие усовершенствования радиоприёмника были принципиально несложными: слабый ток в антенне усилили, сделав его регулятором движения сильного тока…
– Это как? – спросила Галатея.
– Слабый ток в антенне может включать и выключать сильный ток в другой цепи, тем самым радиосигнал будет управлять гораздо более мощным процессом, чем он сам. Ребёнок не может сам выкорчевать пень, зато может ключом зажигания завести трактор, который это сделает.
– Это понятно даже ребёнку! – заявила девочка.
– А сильный ток может делать сотни вещей, в том числе заставить мембрану динамика колебаться – вот усовершенствованный приёмник и зазвучал!
– В радиотехники, что ли, пойти, раз там всё так просто… – пробормотала Галатея.
– А кто сделал первый приёмник? – спросил Андрей.
Джерри откинулся на стуле и начал обо всём рассказывать по порядку:
– Великий шотландец Максвелл в 1865 году доказал с помощью математических уравнений, что должны существовать электромагнитные волны, вызываемые ускорением зарядов. Эти волны могут распространяться даже в пустоте и невидимы, но описываются теми же уравнениями, что и свет, являющийся колебанием электромагнитного поля более высокой частоты, а значит, электромагнитной волной с короткой длиной волны.
В 1879 году знаменитый физик Гельмгольц предложил своему ученику – двадцатидвухлетнему студенту Генриху Герцу – выбрать темой диссертации экспериментальное подтверждение теории Максвелла о существовании длинных электромагнитных волн, которые распространяются со скоростью света. После долгих раздумий Герц отказался от этой темы, выбрав задачу, которую он знал как решать.
– Как подтвердить теорию Максвелла, он не знал? – спросил Андрей.
– Да, Герц не понимал, какой прибор нужно сделать, чтобы поймать невидимые электромагнитные волны большой длины. Он полагал, что прибор будет сложным, это его пугало, и в итоге Герц защитил диссертацию по более понятной теме.
Прошло семь лет, Герц стал профессором в университете Карлсруэ. Однако настоящий учёный никогда не расстаётся с нерешённой проблемой. Как-то Герц заметил, что искры, вызываемые в контуре с источником энергии, неожиданно порождают слабые искры в соседнем контуре, который не связан с первым и не имеет источников энергии.
– Как этот приёмник из проволочного кольца? – указал Андрей на рамку.
– Да. Это наблюдение дало Герцу ключевую идею нового прибора, который мог доказать существование электромагнитных волн.
– Значит, его открытие было случайным? – протянула Галатея.
– Нет. Герц всегда помнил о проблеме, поставленной Гельмгольцем, и всегда, может и неосознанно, искал её решение. Возникновение искр во втором контуре было свидетельством электромагнитной связи между двумя контурами, но эту связь мог заметить лишь тот, кто её искал.
Герц создал простой генератор низкочастотных электромагнитных колебаний, излучавший электромагнитные волны с длиной волны в десятки сантиметров, и исключительно простой приёмник этих волн, который принимал сигнал на расстоянии трёх метров.
– Да уж, проще не бывает, – сказала Галатея, разглядывая проволочную рамку.
– С помощью этих простейших устройств Герц сделал целую серию фундаментальных открытий. Он измерил скорость распространения новой электромагнитной волны, которую впоследствии стали называть радиоволной, – она оказалась равной скорости света. Учёный показал, что радиоволна может отражаться металлическим отражателем, как свет – зеркалом. Пытаясь улучшить видимость слабой искры в приёмнике, Герц поместил его в тёмную коробку и обнаружил, что искра от этого ещё больше слабеет. Он поэкспериментировал с разными коробками и узнал, что некоторые материалы не пропускают новые волны, другие пропускают, но ослабленными, третьи – отражают. Тем самым Герц заложил основы радиолокации. Его передатчик использовал конденсаторы, и в процессе опытов Герц открыл, что облучение ультрафиолетовым светом способствует разрядке конденсаторов. Тем самым Герц открыл фотоэффект, который позднее был объяснён Эйнштейном, получившим за это Нобелевскую премию.
– И всё это было сделано с помощью вот такой рамки?! – восхитилась Галатея.
– Герц умер от болезни в 36 лет, но оставил ярчайший след в науке и технологии. Из его простого прибора выросли радио и телевидение, авиационные радары и мобильные телефоны, радиотелескопы и межпланетная связь.
Интересно, что сам Герц скептически относился к возможностям практического применения своих открытий – считал, что его открытия интересны лишь для развития теоретической науки, как и теория Максвелла: «Это абсолютно бесполезно. Это только эксперимент, который доказывает, что маэстро Максвелл был прав. Мы всего-навсего имеем таинственные электромагнитные волны, которые не можем видеть глазом, но они есть». Когда Герца спросили: «И что же дальше?» – он пожал плечами и ответил: «Я предполагаю – ничего». На самом деле учёный совершил одно из важнейших открытий в истории человечества, которое вскоре изменило многие области технологии и науки, в том числе астрономию, где возникло новое направление – радиоастрономия.
Фраунгофер показал, что всем знакомый и хорошо видимый солнечный свет несёт информацию о химическом составе звёзд. Герц доказал существование гораздо более длинных электромагнитных волн – радиоволн и повёл наступление на загадки космоса с другой стороны, расширив электромагнитный спектр с видимого диапазона длин волн до более длинноволновой части спектра – радиодиапазона. Радиоволны тоже могут много рассказать о жизни звёзд и туманностей.
В конце короткой жизни Герц вместе со своим студентом Ленардом занялся катодными лучами.
– Это что за лучи? – поинтересовалась Галатея.
– В XIX веке учёные, исследовавшие прохождение электрического тока через воздух, столкнулись с загадкой: если включить в электрическую цепь стеклянную трубку или колбу с двумя электродами – отрицательно заряженным катодом и положительным анодом, – ток по цепи продолжает идти. Правда, для этого нужно откачать воздух из баллона, что требовало от исследователя немалой физической силы.
– Физической силы? – удивилась Галатея.
– В те времена, чтобы получить хороший вакуум, требовалось много раз поднять и опустить сосуд с несколькими килограммами ртути – так был устроен тогдашний вакуумный насос.
Во время эксперимента с вакуумной разрядной трубкой наблюдалось таинственное свечение её стеклянных стенок. Свободный исследователь, англичанин Крукс, провёл в своей частной лаборатории ряд замечательных опытов, которые показали: с катода вылетают потоки таинственной отрицательно заряженной материи, которые стали называть «катодными лучами».
– А как он понял, что материя катодных лучей заряжена отрицательно? – спросил Андрей.
– Он поднёс к трубке магнит, и катодные лучи искривились в том направлении, в каком должны были отклониться отрицательные частицы. Крукс поместил в трубку легкую вертушку, и она завертелась, показав, что катодные лучи обладают механическим действием. Потом разместил в потоке этих лучей металлический крест и увидел, как на флуоресцирующей стенке колбы появилось его изображение. Точнее говоря, тень, потому что металл поглотил катодные лучи.
– Что же это были за лучи? – взмолилась Галатея. – Открой тайну, дядя Джерри!
– Хорошо, не буду вас больше интриговать: катодные лучи были потоком электронов, которые вырывались с поверхности катода и летели к аноду под воздействием электрического поля. Фактически Крукс заложил основы современного телевидения, показав, что потоком электронов, вызывающих свечение экрана, можно рисовать разные картины, управляя движением электронов с помощью магнитного поля. Но тогда учёные ещё не открыли такую частицу, как электрон. Это позднее, в 1897 году, сделал Джозеф Джон Томсон – с помощью усовершенствованной трубки Крукса.
А пока на дворе был 1892 год, и в команду исследователей катодных лучей включились Герц с Ленардом. Герцу удалось показать, что катодные лучи могут проникать сквозь тонкую алюминиевую фольгу. Ленард создал трубку, в которой часть стекла была заменена на алюминиевую пластинку, скорее алюминиевую фольгу толщиной в пять микрон или пять тысячных миллиметра. Из трубки с алюминиевым окошком катодные лучи могли выходить наружу, что было очень полезно в ряде исследований. Ленард заметил, что катодные лучи засвечивают фотопластинки, даже закрытые картоном. В 1894 году в берлинских «Анналах физики и химии» он написал: «Катодные лучи являются фотоактивными.
При достаточно долгой экспозиции можно вполне наблюдать их действие на фотографическую пластинку. На пластинке, помещённой под листом картона, видны чётко очерченные зоны почернения. Над картоном помещались различные металлические пластины, которые в зависимости от степени их проницаемости для катодных лучей казались на фотопластинке более или менее тёмными. Только там, где металлическая пластина имела достаточную толщину, фотопластинка оказывалась незасвеченной. Таким образом, установлено, что катодные лучи проходят сквозь картон и металл».
Ленард ошибался.
– Как можно ошибаться в эксперименте? Это же факт! – удивился Андрей.
Джерри пояснил:
– Ленард неправильно интерпретировал свои бесспорно верные наблюдения, тем самым лишив их истинной ценности. На самом деле, сталкиваясь с веществом разрядной трубки, поток электронов порождал другое излучение – очень короткие, гораздо более короткие, чем свет, электромагнитные волны, в будущем ставшие не менее ценным источником информации о Вселенной. Именно эти лучи засвечивали фотопластинки Ленарда, но он этого не понял, и невидимые лучи получили название «рентгеновских», по имени человека, который год спустя правильно расшифровал их природу.
– А вы расскажете про этого человека? – с просительной интонацией сказала Галатея. – Вы же остаётесь у нас до завтра?
– Договорились. Расскажу! – улыбнулся гость.
Примечания для любопытных
Генрих Герц (1857–1894) – великий немецкий физик, первооткрыватель радиоволн.
Катод – электрод, подсоединённый к отрицательному полюсу батареи.
Анод – электрод, подсоединённый к положительному полюсу батареи.
Герман Гельмгольц (1821–1894) – выдающийся немецкий физик и врач. Сформулировал закон сохранения энергии, открыл неустойчивость Кельвина-Гельмгольца, развивающуюся на границе двух взаимно движущихся сред (типичный пример: волны, растущие на границе воды и воздуха под воздействием ветра).
Фотоэффект – эффект выбивания электронов с поверхности вещества при облучении его светом или любым другим электромагнитным излучением.
Альберт Эйнштейн (1879–1955) – великий физик-теоретик, создатель специальной и общей теории относительности. Объяснил явление фотоэффекта и получил за это Нобелевскую премию (1921).
Уильям Крукс (1832–1919) – видный физик-исследователь, создатель разрядных трубок Крукса. Был президентом Королевского общества.
Филипп Ленард (1862–1947) – немецкий физик, исследовал катодные лучи в разрядных трубках. Лауреат Нобелевской премии по физике (1905).
Джозеф Джон Томсон (1856–1940) – видный английский физик, открыл электрон и создал первую модель атома. Лауреат Нобелевской премии по физике (1906).
Ücretsiz ön izlemeyi tamamladınız.