Kitabı oku: «Наука и общество», sayfa 3
Для нас промышленное значение Байкала в том, что он является мощным очистителем воды, и наша забота о Байкале состоит в том, чтобы сохранить его способность очищать воду. Поэтому подход «не трогайте Байкал» – это неправильный подход. Байкал надо эксплуатировать, но так, чтобы не нарушить в нем жизни и сохранять его очистительные свойства. Для этого нужно знать, чем и в какой мере можно загрязнять Байкал, чтобы он мог перерабатывать поступающие загрязнения и очищать воду. Таким образом, задача использования Байкала ставит перед учеными-биологами вполне четкий вопрос об определении экологических процессов, которые идут в его водах при поступлении в них отходов производств. Перед учеными-химиками стоит задача разработки таких технологических процессов, отходы от которых соответствовали бы требованиям, поставленным биологами, т. е. чтобы отходы могли перерабатываться Байкалом.
Например, известно, что эффективность биологических процессов в воде в значительной мере определяется количеством растворенного в ней кислорода. Поэтому в тех районах озера, куда поступает загрязнение, интенсивность биологических процессов можно было бы повысить, насыщая воду кислородом, продувая воздух, как это обычно делают в аквариумах. Современная техника располагает сейчас возможностями не только в глобальном масштабе прекращать жизнь, но и стимулировать ее. Природу следует лечить от заболеваний так же, как мы лечим людей. При правильном решении вопроса вполне можно было бы ожидать, что эффективность очистительной мощности Байкала может даже возрасти. Задача организации этих работ лежит на Госплане и Академии наук СССР.
Ярким примером того, что происходит с озерами при неправильном использовании их вод и без учета происходящих в них биологических процессов, являются Великие озера США и Канады. Отходами производств, использующих воды этих озер, они были загрязнены до такой степени, что вся жизнь в этих озерах прекратилась и вода их для ряда производств уже не годится. Поэтому сейчас правительством США принято решение восстановить нормальную жизнь в этих озерах, но для этого надо полностью реорганизовать методы использования воды так, чтобы создать тот экологический процесс, который нужен, чтобы воскресить жизнь в озерах.
Для этого на ближайшие три года правительство США ассигнует сумму в 5 млрд дол. Считается, однако, что этой суммы недостаточно, чтобы полностью возродить Великие озера. Ряд экспертов утверждает, что для этого потребуется сумма до 25 млрд дол.
Экология, несомненно, должна стать одной из центральных биологических наук. Ее основная задача – не только изучение существующих сейчас в природе биологических равновесий, но, главное, исследование тех жизнеспособных равновесий, которые могут существовать при использовании природы в современных промышленных процессах, а также, конечно, изучение равновесных процессов, возникающих при широком употреблении в сельском хозяйстве различных химикалиев. Все эти процессы воздействия человека на природу достигают сейчас глобальных масштабов, и, поскольку их развитие следует экспоненциальному закону, отсутствие контроля над ними может привести к взрыву.
Третий аспект глобальных проблем – это создание социальных условий, которые сделали бы возможным проведение в жизнь путей развития техники и промышленности на научной основе, обеспечивающей уравновешенное развитие цивилизации без риска катастрофы взрывного характера.
Для решения первых двух указанных вначале вопросов мы можем, как было показано, четко спланировать научные проблемы, которые нам нужно решить в областях энергетики, технологии и экологии, чтобы предотвратить грозящую катастрофу, связанную с истощением сырья и загрязнением окружающей среды.
Если есть все основания считать, что наука справится с первыми двумя задачами, то создание и внедрение соответствующих мероприятий в глобальном масштабе является социальной проблемой; решение ее пока еще находится в зачаточном состоянии.
Сейчас начинают вырисовываться основные трудности, связанные с решением этих социальных проблем. Поскольку их решение необходимо приведет к мероприятиям в интернациональном масштабе, они могут вступить в противоречие с национальными интересами отдельных стран.
Возьмем простой пример. Рядом существуют две страны. Одна из них производит целлюлозу, не загрязняя воду, в другой стране ее производство загрязняет воду. При этом стране, которая не загрязняет воду, бумага будет обходиться дороже, чем другой стране. Промышленность одной страны будет заражать океан, другой – нет. Ясно, что обеспечение чистоты воды в океане нужно большому количеству прибрежных стран и чистота воды есть проблема интернациональная. Возникает, следовательно, задача – побудить ту страну, которая делает бумагу, загрязняя воду, освоить более дорогой процесс, хотя это будет противоречить ее национальным интересам, поскольку при этом она может потерять рынок и ей к тому же придется затратить капитал на более дорогое оборудование.
Сейчас еще не найдены эффективные методы воздействия на страны, которые могли бы не позволить загрязнять окружающую среду. Это видно на примере тех стран, которые сейчас в своих узконациональных интересах производят ядерные взрывы в атмосфере, отравляя ее радиоактивностью. Поэтому, я полагаю, в ближайшем будущем людям придется, видимо, создать авторитетную международную организацию для контроля глобальных проблем в международном масштабе.
Сейчас такие глобальные социальные проблемы начинают широко обсуждаться. Одна из сторон этого обсуждения начинает довольно четко выявляться. Даже на Западе ряд социологов-экономистов считает, что решение технико-экономических проблем в глобальном масштабе может быть осуществлено только на основе социалистической организации промышленности. Так, например, высказался крупный голландский экономист Сикко Мансхолт [4].
Есть и другие направления, представители которых утверждают, например, что и капиталистические организации до сих пор находили в себе скрытые возможности авторегулирования путем установления цен и налогов, и сейчас таким же путем смогут быть разрешены и глобальные проблемы. Это, например, утверждает профессор экономики Гарвардского университета Карл Кейзен [5]. Пока все эти рассуждения лишены конкретности.
Неоспоримо, что надежная основа для решения глобальных проблем обеспечивается социалистической организацией народного хозяйства. Уже сейчас видно, что решение экологических проблем в больших масштабах вполне осуществимо в нашей стране. Поэтому пример использования вод Байкала приобретает интернациональное значение. На нем мы смогли бы показать, что можем эксплуатировать богатства Байкала, не нарушая равновесия в природе, чего не сумели сделать капиталистические страны. Таким образом, и здесь мы доказали бы на опыте, что в противоположность капитализму, социализм по своему существу более приспособлен для решения такого рода экологических проблем. Вот почему проблема Байкала сейчас привлекает большое внимание общественности.
Мне думается, что на Байкал следует направить наши лучшие биологические и технические силы, чтобы и технологи, и биологи совместно занялись экологическими процессами жизни этого озера.
Я убежден в том, что необходимость решения глобальных проблем в интернациональном масштабе благоприятно повлияет на решение проблемы мирного сосуществования и разоружения.
Характерной чертой расходов на вооружение является связанное с ним поглощение во флоте, авиации, механизированных войсках большого количества энергетических ресурсов. Известно, что производство военной техники связано с потреблением в большом количестве ценных материалов: при этом ничего не производится для благосостояния людей. При производстве и использовании вооружения нет возможности организовать «замкнутый» процесс, который необходим для экономического равновесия.
Когда в глобальном масштабе начнет возникать недостаток в материалах и в энергетических ресурсах и это начнет катастрофически влиять на уровень благосостояния людей, то перед человечеством не останется другого выбора, как начать сокращать вооружение, поскольку риск гибели от агрессии будет менее реален, чем опасность гибели от недостатка материальных ресурсов. К тому же, поскольку решение глобальных проблем должно происходить при тесном международном сотрудничестве, люди начнут чувствовать, что они живут в общей квартире и что у всего человечества есть только один общий враг: это наступающий глобальный кризис, с которым, позабыв все распри, надо начинать дружно бороться.
Сейчас интерес к глобальным проблемам очень быстро растет, и в процессе их обсуждения, конечно, неизбежны многие противоречия в оценке как их масштабности, так и предлагаемых методов решения. Но, несмотря на это, все высказывающиеся по этому вопросу сходятся на одном: эти глобальные проблемы являются для человечества сейчас чрезвычайно важными, и на их решение должны быть направлены основные культурные силы всех стран.
К тому же на решение этих проблем у человечества осталось не так уж много времени, во всяком случае, меньше столетия, в течение которого возможно предотвратить экологический кризис. Чтобы человечество со всей необходимой энергией принялось за решение этих проблем, первым долгом люди в самых широких слоях должны осознать значимость и последствия глобального кризиса. Объяснить это людям могут ученые, которые первыми количественно оценили значение предстоящего кризиса и могут указать, по какому пути должно идти развитие цивилизации, чтобы предотвратить грозящие ей испытания.
Поэтому долг ученых во всех областях как естественных, так и гуманитарных наук – организовывать общественное самосознание людей, чтобы они действовали сообща в решении экологических проблем на всем нашем земном шаре, размеры которого, как теперь стало ясно, весьма ограничены.
Литература
1. Forrester J. W. World Dynamics. Cambridge, 1971.
2. Meadows D. H., Meadows D. L., Panders J., Behrens W. W. III. The Limits to Growth. N.Y.: University Books, 1972.
3. Heilbroner R. L. Growth and Survival // Foreign Affairs. 1972. Oct.
4. Mansholt S. et al. Ecologie et revolution // Nouvel Observateur. 1972. N397. suppl. spec. II.
5. Kaysen C. The Computer that Printed Out W*O*L*F* // Foreign Affair. 1972. July.
Энергия и физика
Доклад на научной сессии, посвященной 250-летию Академии наук СССР, Москва, 8 октября 1975 г. См.: Вестник АН СССР. 1976. № 1. С. 34–43.
Общепризнано, что основным фактором, определяющим развитие материальной культуры людей, является создание и использование источников энергии. Производимая ими работа теперь во много раз превосходит мускульную. Так, в наиболее развитых странах используемая мощность разнообразных источников энергии составляет до 10 киловатт на человека в год. Это, по крайней мере, в 100 раз больше, чем средняя мускульная мощность одного человека.
Роль энергии в народном хозяйстве хорошо иллюстрируется рисунком. (Данные относятся к 1968 г.; составлены по материалам ООН и Международного банка реконструкции и развития.) По горизонтальной оси отложена стоимость валового национального продукта (ВНП) для различных стран (в долларах на человека), а по вертикали – потребление энергии в пересчете на каменный уголь (в килограммах на человека).
В пределах естественной флуктуации видно, что существует простая пропорциональность. Поэтому если люди будут лишаться энергетических ресурсов, то, несомненно, их материальное благосостояние будет падать.
Получение, преобразование и консервирование энергии и есть фундаментальные процессы, изучаемые физикой. Основная закономерность, которую установила физика, – это закон сохранения энергии. На основании этого закона предсказывается глобальный кризис в получении энергии [1]. Сейчас в качестве основных энергетических ресурсов используются торф, уголь, нефть, природный газ. Установлено, что запасенная в них химическая энергия была накоплена в продолжение тысячелетий благодаря биологическим процессам. Статистические данные по использованию этих ресурсов показывают, что в ближайшие столетия они будут исчерпаны. Поэтому, на основе закона сохранения энергии, люди, если они не найдут других источников энергии, будут поставлены перед необходимостью ограничения ее потребления, и это приведет к снижению уровня материального благосостояния человечества.
Неизбежность глобального энергетического кризиса сейчас полностью осознана, и поэтому энергетическая проблема для техники и науки стала проблемой № 1. Сейчас в ведущих странах отпускаются большие средства на научно-технические исследования в этой области. Главное направление этих поисков обычно ведется с узкотехническим подходом, без достаточного учета тех закономерностей, которые установлены физикой. Жизнь показала, что эффективность исследований значительно повышается, если они ведутся с более глубоким учетом базисных законов физики.
В моем сообщении я хочу отметить те закономерности физики, которым следовало бы играть ведущую роль в решении энергетических проблем.
Энергия, которой пользуются люди, делится теперь на две части. Первая – это так называемая бытовая энергия. Она непосредственно обеспечивает культурный образ жизни. Эта энергия используется для освещения, для питания холодильников, телевизоров, электробритв, пылесосов и большого количества других приборов, которыми пользуются в повседневной жизни. Используемая в быту мощность исчисляется обычно киловаттами. Другой вид энергии – это промышленная энергия, энергия больших мощностей. Ее используют в металлургии, на транспорте, в машиностроении, в механизации строительства и сельского хозяйства и ряде подобных областей. Эта энергия значительно больше бытовой, мощность ее исчисляется в мегаваттах, ее масштабы и стоимость определяют уровень валового продукта в народном хозяйстве страны. Конечно, предстоящий кризис будет вызван недостатком ресурсов энергии только в энергетике больших мощностей: обеспечение получения этой энергии в достаточном количестве и является основной проблемой, которая ставится перед наукой.
Я уже сказал, что предсказания предстоящего энергетического кризиса делаются на основе закона сохранения энергии. Как известно, большую роль в ограничении возможности использования энергетических ресурсов играет также закон, требующий во всех процессах преобразования энергии возрастания энтропии. Оба эти закона накладывают «вето» на преодоление кризиса путем создания «перпетуум мобиле». Закон сохранения энергии накладывает «вето» на «перпетуум мобиле» 1-го рода. Энтропия накладывает «вето» на так называемый «перпетуум мобиле» 2-го рода. Интересно отметить, что этот второй род «перпетуум мобиле» и по сей день продолжают предлагать изобретательные инженеры, и часто опровержение такого рода устройств связано с большими хлопотами. Эта область относится к термодинамике, она хорошо изучена, и я на ней останавливаться не буду.
Я ограничусь рассмотрением закономерностей, которые определяют развитие энергетики больших мощностей и связаны с существованием в природе ограничений для плотности потока энергии. Как будет видно, часто эти ограничения не учитываются, что ведет к затратам на проекты, заведомо бесперспективные. Это и будет основной темой моего доклада.
Все интересующие нас энергетические процессы сводятся к трансформации одного вида энергии в другой, и это происходит согласно закону сохранения энергии. Наиболее употребительные виды энергии – электрическая, тепловая, химическая, механическая, а теперь и так называемая ядерная. Трансформацию энергии обычно можно рассматривать как происходящую в некотором объеме, в который через поверхность поступает один вид энергии, а выходит преобразованная энергия.
Плотность поступающей энергии ограничена физическими свойствами той среды, через которую она течет. В материальной среде плотность потока энергии U ограничивается следующим выражением:
U < vF, (1)
где v – скорость распространения деформации, обычно равная скорости звука, F — плотность энергии, которая может быть либо упругой, либо тепловой, U есть вектор. (При стационарных процессах div U определяет величину преобразования энергии в другой вид.) Вектор U оказывается весьма удобным для изучения процессов преобразования энергии. Впервые он был предложен в 1874 г. русским физиком Н. А. Умовым. Десятью годами позже такой же вектор для описания энергетических процессов в электромагнитном поле был дан Дж. Пойнтингом. Поэтому у нас принято называть его вектором Умова-Пойнтинга.
Если выражение (1) применить для газовой среды, то оно приобретет следующий вид:
U =A T1/2p, (2)
где А – коэффициент, зависящий от молекулярного состава газа, Т – температура и р – давление газа.
Выражение такого вида определяет, например, ту предельную мощность, которую может передать горючая среда на единицу поверхности поршня мотора или лопаток турбины. Как видно, эта мощность падает с давлением; поэтому такое же выражение определяет ту предельную высоту, на которой может летать турбореактивный самолет.
Используя вектор Умова-Пойнтинга, можно описывать даже процессы, когда энергия передается ременной передачей. Тогда произведение скорости ремня на его упругое напряжение дает мощность трансмиссии. Таким же путем можно определить предельную мощность, передаваемую лентой в генераторе типа Ван-де-Граафа.
Мне пришлось на практике встретиться с технической проблемой, когда недостаточная плотность потока электрической энергии ограничивала осуществление решения этой проблемы на практике. Это произошло при следующих поучительных обстоятельствах.
В 40-х годах мой учитель А. Ф. Иоффе занимался разработкой оригинального электростатического генератора, который питал небольшую рентгеновскую установку. Этот генератор был прост по своей конструкции и неплохо работал. Тогда у Иоффе возникла идея заменить в широком масштабе электромагнитные генераторы на электростатические и перевести на них всю большую электроэнергетику страны. Главным основанием было то, что электростатические генераторы не только проще по своей конструкции, но могут сразу давать высокое напряжение для линий передач. Мне пришлось тогда опровергать осуществимость этого проекта, исходя из оценки плотности потока электроэнергии при трансформации ее в механическую.
Определим, согласно выражению (1) для U, плотность потока энергии, которая в зазоре между ротором и статором генератора преобразуется из механической в электрическую или обратно. Тогда v будет равна окружной скорости ротора генератора. По конструктивным соображениям эта скорость обычно берется около 100 м/с. Тангенциальные силы взаимодействия между статором и ротором в электромагнитном генераторе определяются энергией магнитного поля, поэтому мы имеем для плотности потока энергии:
U = α(H2/4π)v (3)
Коэффициент α определяется конструкцией генератора и характеризуется косинусом угла, образованного силой F и скоростью v. Обычно α имеет величину, равную нескольким десятым долей единицы. Магнитное поле Н определяется насыщением железа и не превышает 2×104 Э. При этом плотность потока электроэнергии (которая трансформируется в механическую или обратно) получается около 1 кВт на см2. Таким образом, для генератора мощностью 100 МВт ротор будет иметь рабочую поверхность примерно около 10 м2. Для электростатического генератора плотность потока энергии U будет равна
U = α(E2/4π)v, (4)
где электростатическое поле Е ограничивается электрической прочностью воздуха и не превышает 3×104 В/см, или 100 э. – с. е. Поэтому, чтобы получить ту же мощность в 100 МВт, потребуется ротор с поверхностью в (Н/Е)2 = 4×105 раз большей, т. е. равной 4×105 м2, или примерно половине квадратного километра. Таким образом, электростатический генератор больших мощностей получается практически неосуществимых размеров.
Аналогичный анализ показывает, что ограничение плотности потока энергии приводит к тому, что для энергетики больших мощностей приходится отказываться от ряда весьма эффективных процессов трансформировании энергии. Так, например, в газовых элементах, где происходит прямое превращение химической энергии окисления водорода в электроэнергию, этот процесс уже сейчас может осуществляться с высоким КПД, который достигает 70 %. Но возможность применения газовых элементов для энергетики больших мощностей ограничивается весьма малой скоростью диффузионных процессов в электролитах; поэтому, согласно выражению (1), на практике плотность потока энергии очень мала, и с квадратного метра электрода можно снимать только 200 Вт. Для 100 мегаватт мощности рабочая площадь электродов достигает квадратного километра, и нет надежды, что капитальные затраты на построение такой электростанции оправдаются генерируемой ею энергией.
Другое, тоже, казалось бы, очень перспективное направление, но на которое по той же причине нельзя возлагать надежды, – это прямое превращение химической энергии в механическую. Как известно, такие процессы широко осуществляются в живой природе, в мускулах животных. К стыду биофизиков, эти процессы еще по-настоящему не поняты, но хорошо известно, что их КПД весьма высок. Однако эти процессы, даже если со временем они будут воспроизведены не на живой природе, не смогут быть применены для энергетики больших мощностей, так как и здесь плотность потока энергии будет мала, поскольку она ограничивается скоростью диффузионных процессов, происходящих через мембраны или поверхность мускульных волокон. Скорость диффузии здесь не выше, чем в электролитах, поэтому плотность энергетического потока не может быть больше, чем в газовых элементах.
Сейчас главный интерес привлекают те методы генерирования энергии, которые не зависят от количества энергии, запасенной в прошлом в топливе различного вида. Здесь главным из них считается прямое превращение солнечной энергии в электрическую и механическую, конечно, в больших масштабах. Опять же осуществление на практике этого процесса для энергетики больших мощностей связано с ограниченной величиной плотности потока энергии. Оптимальный расчет сейчас показывает, что снимаемая с одного квадратного метра освещенной Солнцем поверхности мощность в среднем не будет превышать 100 Вт. Поэтому, чтобы генерировать 100 МВт, нужно снимать электроэнергию с площади в 1 км2.
Ни один из предложенных до сих пор методов преобразования солнечной энергии не может этого осуществить так, чтобы капитальные затраты могли оправдаться полученной энергией. Чтобы это было рентабельно, надо понизить затраты на несколько порядков, и пока даже не видно пути, как это можно осуществить. Поэтому следует считать, что практическое прямое использование солнечной энергии в больших масштабах нереально. Но по-прежнему это остается возможным через ее превращение в химическую энергию, как это испокон веков делается при содействии растительного мира. Конечно, не исключено, что со временем будет найден фотохимический процесс, который откроет возможность более эффективно и проще превращать солнечную энергию в химическую, чем это происходит сейчас в природе. Такой процесс химического накопления будет иметь еще то большое преимущество, что даст возможность использования солнечной энергии вне зависимости от изменения ее интенсивности в продолжение дня или времен года.
Ücretsiz ön izlemeyi tamamladınız.