Sadece LitRes`te okuyun

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «Practical Exercises in Elementary Meteorology», sayfa 9

Yazı tipi:

CHAPTER XXI.
WINDS

The determination of the direction of the wind (by means of the wind vane) and of its velocity (by means of the anemometer, or by estimating its strength) at different hours, under different conditions of weather and in different seasons, leads to a number of problems. The following simple investigations may readily be undertaken in schools:—

A. The Diurnal Variation in Wind Velocity in Fair Weather.—Observe and record the velocity of the wind (either estimated or registered by the anemometer) every hour, or as often as possible, on clear or fair days in different months. Can you discover any regular change in the velocities during the day? If so, what is the change? Does the season seem to have any control over the results obtained? Examine the daily weather maps in connection with your observations and determine the effect that different weather conditions have upon the diurnal variation in wind velocity.

The diurnal variation in wind velocity over the open ocean is so slight as hardly to be noticeable. Over the land, the daytime winds are commonly strongest in arid regions. Traveling across the desert often becomes extremely disagreeable, owing to the clouds of dust which these winds sweep up from the surface.

B. The Variations in Direction and Velocity due to Cyclones and Anticyclones.—Record the direction and velocity of the wind at your station at frequent intervals during the passage of a considerable number of cyclones and anticyclones. Enter your observations in some form of table so that they may be readily examined. (See p. 113.) Note the character of the changes that occur, classifying them into types, so far as possible. Study the control of wind directions and velocities by the special features of the individual cyclones and anticyclones as shown on the daily weather maps. How are the different types of change in direction and velocity affected by the tracks of cyclones and anticyclones? By their velocity of progression? By the arrangement of isobars around them? By the height of the barometer at the center? By the season in which the cyclones and anticyclones occur?

Frequent changes in the direction and velocity of our winds are one great characteristic of the Temperate Zones, especially in winter. The continuous procession of cyclones and anticyclones across the United States involves continuous shifts of wind. Over much of the earth’s surface, however, the regularity and constancy of the winds are the distinguishing feature of the climate. Over a considerable part of the belts blown over by the northeast and southeast trades, roughly between latitude 30° N. and S. and the equator, the winds keep very nearly the same direction and the same velocity day after day and month after month. Thus the trades are of great benefit to commerce. Sailing ships may travel for days in the trade wind belts without having their sails shifted at all, with a fair wind all the time carrying them rapidly on to their destination.

C. The Occurrence and Characteristics of Local Winds, such as Mountain and Valley and Land and Sea Breezes.—If the observer happens to be living in or near the mouth of a valley or on a mountain side, opportunity may be given for the observation of the local winds down the mountain sides and down the valley at night, and up the valley and the mountain sides by day, known as mountain and valley breezes. Keep a record of wind direction and velocity during the day, and especially during the morning and evening hours. Notice any marked changes in direction, and the relation of these changes to the time of day. Does the velocity of the daytime up-cast breeze show any systematic variation during the day? Study the relation of mountain and valley breezes to the general weather conditions shown on the weather maps. How are these breezes affected by season? By the presence of a cyclone over the region? Of an anticyclone? By the state of the sky?

If near the seacoast (i.e., within 10 or 15 miles), an interesting study may be made of local land and sea breezes. The sea breeze is a wind from the ocean onshore, while the land breeze blows offshore. These breezes occur only in the warmer months. Take frequent observations during the day, as in the case of mountain and valley winds, noting especially any changes in direction and velocity, and the relation of these changes to the time of day. Study also the control exercised by the prevailing weather conditions over the occurrence and the strength of development of the land and sea breezes.

This problem may be considerably extended by adding temperature observations to the simpler record of wind direction and velocity.

In some of the Swiss valleys the mountain and valley breezes are such regular daily weather phenomena that it has become a weather proverb that a failure of the daily change in wind direction indicates a change of weather. Special names are often given to these breezes where they are well marked. In a part of the Tyrol sailing boats go up the lakes by day with the valley breeze, and sail back at night with the mountain breeze. It is therefore unnecessary for the boats to be rowed either way. Land and sea breezes, although an unimportant climatic feature in these northern latitudes, are often of the highest importance in the Torrid Zone. The fresh pure sea breeze from over the ocean makes it possible for Europeans to live in many tropical climates where otherwise they would not keep their health. The land breeze, on the other hand, is apt to be an unhealthy wind in the tropics, especially when it blows off of swampy land.

CHAPTER XXII.
HUMIDITY, DEW, AND FROST

The humidity of the air, as determined by the wet and dry-bulb thermometers or the sling psychrometer, and the occurrence or absence of dew or frost, should be studied together. Observations should be made at different hours, in different kinds of weather, and in different seasons. From such observations the following problems may be solved:—

A. Diurnal Variation of Relative Humidity under Different Conditions.—Readings of the wet and dry-bulb thermometers in the instrument shelter, or of the sling psychrometer, several times during the day, will furnish data for determining the diurnal variation of relative humidity. Classify your observations according to the weather conditions under which they were made, and by months or seasons. Summarize the results of your investigation, paying special attention to the relation between the diurnal variation of relative humidity and the temperature.

The variations of relative humidity are generally the reverse of those of absolute humidity. In the case of the latter the average diurnal variations are small. The fluctuations in the relative humidity during the day on the northwestern coast of Europe amount to about 7% in December and 17% in August, while in central Asia they average about 25% in winter and 50% in summer.

B. Relation of Relative Humidity to the Direction of the Wind.—Observations by means of the wet and dry-bulb thermometers in the shelter, or by means of the sling psychrometer, supplemented by records of wind direction, will furnish data for the solution of this problem. Tabulate your observations according to wind directions and seasons. Determine the characteristics of the different winds as to their relative humidities. Consider the control of these winds and humidity conditions by cyclones and anticyclones.

The warm wave, or sirocco, in front of our winter cyclones in the eastern United States is a damp, disagreeable, irritating wind. In summer, the sirocco is usually dry, and during the prevalence of such winds we have our hottest spells, when sunstrokes are not uncommon. In southern Italy the sirocco has the same position with reference to the controlling cyclone. There the wind is often so dry as seriously to injure vegetation. The cold wave, on the rear of our winter cyclones, with its low temperature and dry air, often comes as a refreshing change after the enervating warmth of the preceding sirocco. Our feelings of bodily comfort or discomfort are thus in a large measure dependent upon the humidity and the movement of the air.

C. The Formation of Dew.—The formation of dew is to be studied from the following points of view, viz., as dependent upon: a, the temperature and the humidity of the air; b, the exposure and condition of the ground; c, the state of the sky; and d, the movement of the air. The occurrence of dew on any night, as well as the amount, whether large or small, can readily be ascertained by inspection. Observe the conditions of temperature, humidity, cloudiness, and wind direction and velocity, as in previous exercises. Pay special attention to the state of the sky, the wind movement, and the vertical distribution of temperature near the ground. Under heading b (exposure and condition of the ground) make observations of the amounts of dew formed on hilltops, hillsides, and in valleys; on different kinds of surface covering, as grass, leaves, pavements, etc., and over different kinds of soil. Classify the results in accordance with the conditions under which the observations were made. Compare the results and draw your conclusions from this study. Practise making predictions of the formation of dew in different places and under different weather conditions.

Over the greater portion of the earth’s surface the amount of dew which is deposited is very small. It has been estimated that in Great Britain the total annual amount would measure only an inch and a half in depth; and in central Europe the depth is given as hardly one inch. In some parts of the Torrid Zone, on the other hand, dew is deposited in much larger quantities. According to Humboldt, the traveler through some of the South American forests often finds what seems to be a heavy shower falling under the trees, while the sky is perfectly clear overhead. In this case dew is formed on the tops of the tree in sufficiently large quantities to give a shower underneath. It is reported that on the Guinea coast of Africa the dew sometimes runs off the roofs of the huts like rain. In many dry regions the dew is an important agency in keeping the plants alive.

D. The Formation of Frost.—The formation of frost is to be studied in the same way as that suggested in the case of dew, i.e., as dependent upon: a, the temperature and the humidity of the air; b, the exposure and condition of the ground; c, the state of the sky; and d, the movement of the air. Frosts are usually classified as light or heavy. The words killing frost are also used. Study the weather and surface conditions which are most favorable to the formation of frost. Pay special attention to the relation of frost and inversions of temperature; to the frequency of frost on open or sheltered surfaces; on hills or in valleys, and on the lower and upper branches of trees and shrubs. Determine, as well as you can, the weather conditions which precede light or heavy frosts, and make predictions of coming frosts, when the conditions warrant them.

Our Weather Bureau gives much attention to the prediction of frosts and to the prompt and widespread distribution of frost warnings. Growing crops and fruits are often seriously injured by frosts, and farmers are naturally anxious to have as early warning as possible of their occurrence. Various methods of protecting crops and trees against frost are used. The method most commonly employed consists in the building of fires of brush or other inflammable material on the windward side of the field or the orchard when a frost is expected. The smoke from the fire is blown to leeward across the field, and acts as an artificial cloud, affording protection to the vegetation underneath. Such fires are known as smudges.

CHAPTER XXIII.
CLOUDS AND UPPER AIR CURRENTS

Attentive observation of clouds will soon lead to a familiarity with their common type forms. A series of cloud views,7 with accompanying descriptive accounts, will teach the names of the clouds and give definiteness to the record. The directions of movement of clouds are determined by means of the nephoscope. Cloud observations should be made at different hours, in different weather conditions, and in different seasons. The following problems are concerned with clouds and upper air currents:—

A. The Typical Cloud Forms and their Changes.—Note carefully the characteristic forms assumed by clouds; their mode of occurrence, whether in single clots, or in groups, in lines, or all over the sky; their changes in form and in mode of occurrence. Classify and summarize your results. Compare the clouds of the warm months with those of the cold months.

Observations have shown that clouds have certain definite characteristic forms which are substantially the same in all parts of the world. This fact makes it possible to give names to the different typical forms, and these names are used by observers the world over. Hence cloud observations, wherever made, are comparable. The first classification of clouds was proposed by Luke Howard, in 1803. The classification at present in use is known as the International Classification, and was adopted by the International Meteorological Congress in 1896.

B. The Prevailing Direction of Cloud Movements.—The use of the nephoscope is necessary in the accurate determination of cloud movements. Study the prevailing directions of movement of the clouds, by means of frequent observations with the nephoscope, in different weather conditions. Separate the upper and lower clouds in this study. Summarize your results according to the weather conditions and the kinds of clouds.

C. Correlation of Cloud Form and Movement with Surface Winds, with Cyclones and Anticyclones, and with Weather Changes.—The results obtained in the working out of the two preceding problems may be used in the present problem. Tabulate your observations of cloud forms with reference to the wind directions which prevailed at the time of making the observations. Do the same with the directions of cloud movement. Determine the relation between surface winds and cloud types, and between surface winds and the direction of the upper air currents, as shown by the movements of the upper clouds. Study the control exercised by cyclones and anticyclones over cloud forms and over the direction of the upper air currents.

D. The Use of Clouds as Weather Prognostics.—Attentive observation of the forms and changes of clouds, and of the accompanying and following weather changes, will lead to the association of certain clouds with certain coming weather conditions. Make your cloud observations carefully, taking full notes at the time of observation. Give special attention to the weather conditions that follow. Continue this investigation through as long a period as possible, until you have gathered a considerable body of fact to serve as a basis, and then frame a set of simple rules for forecasting fair or stormy weather on the basis of the forms and changes of the clouds. Such local observations as these may be employed as a help in making forecasts from the daily weather maps.

Clouds were used as weather prognostics long before meteorological observations and weather maps were thought of. To-day sailors and farmers still look to the clouds to give them warning of approaching storms. Many of our common weather proverbs are based on the use of clouds as weather prognostics.

CHAPTER XXIV.
PRECIPITATION

The special study of various problems connected with precipitation involves detailed observations of the amount and rate of precipitation of various kinds, measured by the rain gauge during storms in different seasons. These observations of precipitation should, of course, be supplemented by the usual record of the other weather elements. The following problems are suggested:—

A. The relation of precipitation in general to the other weather elements, and to cyclones and anticyclones.

B. The conditions under which special forms of precipitation (rain, snow, sleet, hail, frozen rain) occur.

C. The conditions associated with light and heavy, brief and prolonged, local and general rainfall.

These problems are studied by means of a careful comparison of full weather records with the daily weather maps during a considerable period of time.

Rain is the most common form of precipitation the world over, although snow falls over large portions of both hemispheres. In the Arctic and Antarctic zones almost all the precipitation, which is small in amount, comes in the form of snow. In southern Europe snow falls at sea level during the winter as far south as 36° north latitude on the average. In eastern Asia snow occasionally falls as far south as 23° north latitude. The mean annual rainfall varies greatly in different parts of the world. In desert regions it is practically nothing. At Cherrapunjee, in India, it reaches 493 inches, or over 40 feet. A fall of 40.8 inches in a single day occurred at this station on June 14, 1876. In the United States, Upper Mattole, Cal., had an extraordinary monthly rainfall of 41.63 inches in January, 1888. An excessive daily rainfall of 8 inches occurred at Syracuse, N. Y., on June 8, 1876. At Washington, D. C., 2.34 inches fell in 37 minutes on June 27, 1881. A sudden and very heavy fall of rain occurred at Palmetto, Nevada, in August, 1890. A rain gauge which was not exposed to the full intensity of the storm caught 8.80 inches of water in one hour. In August, 1891, an observer at Campo, Cal., measured 11.5 inches as the rainfall in one hour from one very heavy downpour, and from a portion of a second storm.

CHAPTER XXV.
PRESSURE

The variations of atmospheric pressure, although insensible to non-instrumental observation, are so intimately connected with atmospheric processes that they deserve careful attention. Their observation leads to several problems.

A. The Decrease of Pressure with Height, as between Valley and Hill, or between the Base and Top of a Building.—Make these observations with the mercurial barometer, if possible. Note the air temperatures at the two levels at which the barometer readings are made. Determine the heights of hill or building by means of the following rule: Multiply by 9 the difference in barometrical readings at the two stations, given in hundredths of an inch, and the result will be approximately the difference in height between the stations in feet. A more accurate result may be reached by means of the following rule: The difference of level in feet is equal to the difference of the pressures in inches divided by their sum, and multiplied by the number 55,761, when the mean of the air temperatures of the two places is 60°. If the mean temperature is above 60°, the multiplier must be increased by 117 for every degree by which the mean exceeds 60°; if less than 60°, the multiplier must be decreased in the same way. For example, if the lower station has a pressure of 30.00 inches and a temperature of 62°, and the upper station has 29.00 inches and 58° respectively, the difference of level between the two will be

(30.00 – 29.00) / (30.00 + 29.00) × 55,761 = 945 feet

If the lower values are 30.15 inches and 65°, while the upper values are 28.67 inches and 59°, then the formula becomes

(30.15 – 28.67) / (30.15 + 28.67) × [55,761 + (2 × 117)] = 1409 feet

The determination of heights by means of the barometer depends upon the fact that the rate of decrease of pressure upwards is known. As the weight of a column of air of a given height varies with the temperature of the air, it is necessary, in accurate work of this sort, to know the air temperatures at both the lower and upper stations at the time of observation. From these temperatures the mean temperature of the air column between the two stations may be determined. Tables have been published which facilitate the reductions in this work. The heights of mountains are usually determined, in the first instance, by means of barometric observations, carried out by scientific expeditions or by travelers that have been able to reach their summits. More accurate measurements are later made, when possible, by means of trigonometrical methods.

B. The Diurnal and Cyclonic Variation of Pressure in Different Seasons.—This problem is satisfactorily solved only by a study of the curves traced by the barograph, or by plotting, as a curve, hourly or half-hourly readings of the mercurial barometer. The diurnal variation of the barometer is the name given to a slight double oscillation of pressure, with two maxima and two minima occurring during the 24 hours. This oscillation is in some way, not yet understood, connected with the diurnal variation in temperature. It is most marked in the tropics and diminishes towards the poles. Fig. 15 illustrates, in the May curve, the diurnal variation of the barometer at Cambridge, Mass., during a spell of fair spring weather, May 18-22, 1887. The maxima are marked by + and the minima by 0. The cyclonic variation of pressure is the name given to those irregular changes in pressure which are caused by the passage of cyclones and anticyclones. The second curve in Fig. 15 shows the cyclonic variations in pressure recorded by the barograph at Cambridge, Mass., during a spell of stormy weather, Feb. 23-28, 1887. These curves serve as good illustrations of these two kinds of pressure variations.

Study your barograph tracings, or your barometer readings, as illustrating diurnal or cyclonic variations of pressure. Note the character and the amount of the diurnal and cyclonic variations, and their dependence on seasons.

Over the greater part of the Torrid Zone the diurnal variation of the barometer is remarkably distinct and regular. Humboldt first called attention to the fact that in those latitudes the time of day may be told within about 15 minutes if the height of the barometer is known.

C. The Relation of Local Pressure Changes to Cyclones and Anticyclones, and thus to Weather Changes.—Make a detailed study of the relation of the local pressure changes at your station, as shown by the barograph curves, or by frequent readings of the mercurial or aneroid barometers, to the passage of cyclones and anticyclones, and to their accompanying weather changes. Classify the simple types of pressure change, so far as possible, together with the general weather conditions that usually accompany these types. Apply the knowledge of local weather changes thus gained when you make your forecast on the basis of the daily weather maps.

7.See Hydrographic Office Cloud Types, Appendix B.
Yaş sınırı:
12+
Litres'teki yayın tarihi:
09 temmuz 2018
Hacim:
243 s. 89 illüstrasyon
Telif hakkı:
Public Domain
Metin
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre