Sadece LitRes`te okuyun

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre», sayfa 3

Yazı tipi:

Die wesentlichen Hindernisse, welche bis in die letzte Zeit in dieser Richtung bestanden, waren nicht so sehr pathologische. Ich bin überzeugt, man würde mit den pathologischen Verhältnissen ungleich leichter fertig geworden sein, wenn es nicht bis vor Kurzem unter die Unmöglichkeiten gehört hätte, die wirklichen Elementartheile des thierischen Leibes zu ermitteln und eine einfache Uebersicht der physiologischen Gewebe zu liefern. Die alten Anschauungen, welche zum Theil noch aus dem vorigen Jahrhundert überkommen waren, haben gerade in demjenigen Gebiete, welches pathologisch am häufigsten in Betracht kommt, nämlich in dem des Bindegewebes, so sehr vorgewaltet, dass noch jetzt eine allgemeine Einigung nicht gewonnen ist, und dass jedermann genöthigt ist, sich durch die Anschauung der Objecte selbst ein Urtheil darüber zu bilden.

Noch in den Elementa physiologiae von Haller findet man an die Spitze des ganzen Werkes, wo von den Elementen des Körpers gehandelt wird, die Faser gestellt. Haller gebraucht dabei den sehr characteristischen Ausdruck, dass die Faser (fibra) für den Physiologen sei, was die Linie für den Geometer.

Diese Auffassung ist bald weiter ausgedehnt worden, und die Lehre, dass für fast alle Theile des Körpers die Faser als Grundlage diene, dass die Zusammensetzung der allermannichfachsten Gewebe in letzter Instanz auf die Faser zurückführe, ist namentlich bei dem Gewebe, welches, wie sich ergeben hat, pathologisch die grösste Wichtigkeit hat, bei dem sogenannten Zellgewebe am längsten festgehalten worden.

Im Laufe des letzten Jahrzehnts vom vorigen Jahrhundert begann indess schon eine gewisse Reaction gegen diese Faserlehre, und in der Schule der Naturphilosophen kam frühzeitig ein anderes Element zu Ehren, das aber in einer viel mehr speculativen Weise begründet wurde, nämlich das Kügelchen. Während die Einen immer noch an der Faser festhielten, so glaubten Andere, wie in der späteren Zeit noch Milne Edwards, so weit gehen zu dürfen, auch die Faser wieder aus linear aufgereihten Kügelchen zusammengesetzt zu denken. Diese Auffassung ist zum Theil hervorgegangen aus optischen Täuschungen bei der mikroskopischen Beobachtung. Die schlechte Methode, welche während des ganzen vorigen Jahrhunderts und eines Theiles des gegenwärtigen bestand, dass man mit mässigen Instrumenten im vollen Sonnenlicht beobachtete, brachte fast in alle mikroskopischen Objecte eine gewisse Dispersion des Lichtes, und der Beobachter bekam den Eindruck, als sähe er weiter nichts, als Kügelchen. Andererseits entsprach aber auch diese Anschauung den naturphilosophischen Vorstellungen von der ersten Entstehung alles Geformten.

Fig. 11. Schema der Globulartheorie. a. Faser aus linear aufgereihten Elementarkörnchen (Molekularkörnchen). b. Zelle mit Kern und sphärisch geordneten Körnchen.


Diese Kügelchen (Körnchen, Granula, Moleküle) haben sich sonderbarer Weise bis in die moderne Histologie hinein erhalten, und es gab bis vor Kurzem wenige histologische Werke, welche nicht mit den Elementarkörnchen anfingen. Hier und da sind noch vor nicht langer Zeit diese Ansichten von der Kugelnatur der Elementartheile so überwiegend gewesen, dass auf sie die Zusammensetzung, sowohl der ersten Gewebe im Embryo, als auch der späteren begründet wurde. Man dachte sich, dass eine Zelle in der Weise entstände, dass die Kügelchen sich sphärisch zur Membran ordneten, innerhalb deren sich andere Kügelchen als Inhalt erhielten. Noch von Baumgärtner und Arnold ist in diesem Sinne gegen die Zellentheorie gekämpft worden.


Fig. 12. Schema der Umhüllungs- (Klümpchen-) Theorie. a. Getrennte Elementarkörnchen. b. Körnchenhaufen (Klümpchen). c. Körnchenzelle mit Membran und Kern.


In einer gewissen Weise hat diese Auffassung in der Entwickelungsgeschichte eine Stütze gefunden; in der sogenannten Umhüllungstheorie, – einer Lehre, die eine Zeit lang stark in den Vordergrund getreten war (Henle). Danach dachte man sich, dass, während ursprünglich eine Menge von Elementarkügelchen zerstreut vorhanden wäre, diese sich unter bestimmten Verhältnissen zusammenlagerten, nicht in Form sphärischer Membranen, sondern zu einem compacten Haufen, einer Kugel (Klümpchen), und dass diese Kugel der Ausgangspunkt der weiteren Bildung werde, indem durch Differenzirung der Masse, durch Apposition oder Intussusception aussen eine Membran, innen ein Kern entstehe.


Fig. 13. Längsschnitt durch ein junges Februar-Blatt vom Aste einer Syringa. A. Die Rinden- und Cambium-Schicht: unter einer sehr platten Zellenlage sieht man grössere, viereckige, kernhaltige Zellen, aus denen durch fortgehende Quertheilung kleine Haare (a) hervorwachsen, die immer länger werden (b) und durch Längstheilung sich verdicken (c). B. Die Gefässschicht mit Spiralfasern. C. Einfache, viereckige, längliche Rinden-Zellen. – Pflanzenwachsthum.


Gegenwärtig kann man weder die Faser noch das Kügelchen oder das Elementarkörnchen als einen histologischen Ausgangspunkt betrachten. So lange als man sich die Entstehung von lebendigen Elementen aus vorher nicht geformten Theilen, also aus Bildungsflüssigkeiten oder Bildungsstoffen (plastischer Materie, Blastem, Cytoblastem) hervorgehend dachte, so lange konnte irgend eine dieser Auffassungen allerdings Platz finden, aber gerade hier ist der Umschwung, welchen die allerletzten Jahre gebracht haben, am meisten durchgreifend gewesen. Die Bildungsstoffe finden sich wesentlich innerhalb der Zellen (Endoblastem). Auch in der Pathologie können wir gegenwärtig so weit gehen, als allgemeines Princip hinzustellen, dass überhaupt keine Entwickelung de novo beginnt, dass wir also auch in der Entwickelungsgeschichte der einzelnen Theile, gerade wie in der Entwickelung ganzer Organismen, die Generatio aequivoca zurückweisen5. So wenig wir noch annehmen, dass aus saburralem Schleim ein Spulwurm entsteht, dass aus den Resten einer thierischen oder pflanzlichen Zersetzung ein Infusorium oder ein Pilz oder eine Alge sich bilde, so wenig lassen wir in der physiologischen oder pathologischen Gewebelehre es zu, dass sich aus irgend einer unzelligen Substanz eine neue Zelle aufbauen könne. Wo eine Zelle entsteht, da muss eine Zelle vorausgegangen sein (Omnis cellula e cellula), ebenso wie das Thier nur aus dem Thiere, die Pflanze nur aus der Pflanze entstehen kann. Auf diese Weise ist, wenngleich es einzelne Punkte im Körper giebt, wo der strenge Nachweis noch nicht geliefert ist, doch das Princip gesichert, dass in der ganzen Reihen alles Lebendigen, dies mögen nun ganze Pflanzen oder ganze thierische Organismen oder integrirende Theile derselben sein, ein ewiges Gesetz der continuirlichen Entwickelung besteht. Die Erfahrung lehrt keine Discontinuität der Entwickelung in der Art, dass eine neue Generation von sich aus eine neue Reihe von Entwickelungen begründete. Alle entwickelten Gewebe können weder auf ein kleines noch auf ein grosses einfaches Element zurückgeführt werden, es sei denn auf die Zelle selbst. In welcher Weise diese continuirliche Zellenwucherung (Proliferation), denn so kann man den Vorgang bezeichnen, in der Regel vor sich geht, das lässt sich an wachsenden Theilen sowohl von Pflanzen, als von Thieren sehr leicht sehen.


Fig. 14. Knorpelwucherung aus dem Rippenknorpel eines Erwachsenen. Grössere Gruppen von Knorpelzellen innerhalb einer gemeinschaftlichen Umgrenzung (fälschlich sogenannte Mutterzellen), durch successive Theilungen aus einzelnen Zellen hervorgegangen. Am Rande oben ist eine solche Gruppe durchschnitten, in der man eine Knorpelzelle mit mehrfacher Umlagerung von Kapselschichten (äusserer Absonderungsmasse) sieht. Vergröss. 300.


Betrachten wir z. B. einen Längsschnitt aus der jungen Knospe eines Flieder-Strauches, wie sie die warmen Tage des Februar entwickelt haben. In der Knospe ist schon eine Menge von jungen Blättern angelegt, jedes aus zahlreichen Zellen zusammengesetzt. In diesen jüngsten Theilen bestehen die äusseren Schichten aus ziemlich regelmässigen Zellenlagen, die mehr platt viereckig erscheinen, während in den inneren Lagen die Zellen mehr gestreckt sind, und in einzelnen Abschnitten die Spiralfasern auftreten. Kleine Auswüchse (Blatthaare) treten überall am Rande hervor, ganz ähnlich gewissen thierischen Excrescenzen, z. B. an den Zotten des Chorions, wo sie die Orte bezeichnen, an welchen junge Zotten hervorwachsen werden. An unserem Objecte (Fig. 13) sehen wir die kleinen kolbigen Zapfen, die sich in gewissen Abständen wiederholen, nach Innen mit den Zellenreihen des Cambiums zusammenhängend. An diesen zarten Bildungen kann man am besten die feineren Formen der Zelle unterscheiden und zugleich die eigenthümliche Art ihres Wachsthums entdecken. Das Wachsthum geht so vor sich, dass an einzelnen zelligen Elementen eine Theilung eintritt und sich eine quere Scheidewand bildet; die Hälften wachsen als selbständige Elemente fort und vergrössern sich nach und nach. Nicht selten treten auch Längstheilungen ein, wodurch das ganze Gebilde dicker wird (Fig. 13, c). Jeder Zapfen, jedes Pflanzenhaar ist also ursprünglich eine einzige Zelle; indem sie sich quertheilt und immer wieder quertheilt (Fig. 13, a, b), schiebt sie ihre Glieder vorwärts und breitet sich dann bei Gelegenheit auch seitlich durch Längstheilung aus. In dieser Weise wachsen die Haare hervor, und dies ist im Allgemeinen der Modus des Wachsthums nicht nur in der Pflanze, sondern auch in den physiologischen und pathologischen Bildungen des thierischen Leibes.

Nimmt man ein Stück Rippenknorpel im Stadium des pathologischen Wachsthums, so erscheinen schon für das blosse Auge Veränderungen: man sieht kleine Buckel der Oberfläche des Knorpels. Dem entsprechend zeigt das Mikroskop Wucherungen der Knorpelzellen. Hier finden sich dieselben Formen wie bei den Pflanzenzellen: grössere Gruppen von zelligen Elementen, welche je aus einer früheren Zelle hervorgegangen sind, in mehrfachen Reihen angeordnet, mit dem einzigen Unterschiede von den wuchernden Pflanzenzellen, dass zwischen den einzelnen Gruppen Intercellularsubstanz vorhanden ist. An den Zellen unterscheidet man wieder die äussere Kapsel, die sogar an einzelnen Zellen mehrfach geschichtet ist, in zwei-, drei- und mehrfacher Lage, und darin erst kommt die eigentliche Zelle mit Körper, Kern und Kernkörperchen. Nirgends gibt es hier eine andere Art der Neubildung, als die fissipare; ein Element nach dem andern theilt sich: Generation geht aus Generation hervor.

Zweites Capitel.
Die physiologischen Gewebe

Anatomische Classification der Gewebe. Die drei allgemein-histologischen Kategorien. Die speciellen Gewebe. Die Organe und Systeme oder Apparate.

Die Epithelialgewebe. Platten-, Cylinder- und Uebergangsepithel. Epidermis und Rete Malpighii. Nagel und Nagelkrankheiten. Haare. Linse. Pigment. Drüsenzellen.

Die Gewebe der Bindesubstanz. Das Binde- oder Zellgewebe. Die Theorien von Schwann, Henle und Reichert. Meine Theorie. Die Bindegewebskörperchen. Die Fibrillen des Bindegewebes als Intercellularsubstanz. Secretion derselben. Der Knorpel (hyaliner, Faser- und Netzknorpel). Incapsulirte und freie Knorpelkörperchen (Knochenknorpel). Schleimgewebe. Pigmentirtes Bindegewebe. Fettgewebe. Anastomose der Elemente: saftführendes Röhren- oder Kanalsystem.

Die höheren Thiergewebe: Muskeln, Nerven, Gefässe, Blut, Lymphdrüsen. Vorkommen dieser Gewebe in Verbindung mit Interstitialgewebe. Muskeln. Quergestreifte. Faserzellen. Herzmuskulatur. Muskelkörperchen. Fibrillen. Disdiaklasten. Glatte Muskelfasern. Muskelatrophie. Die contractile Substanz (Syntonin) und die Contractilität überhaupt. Cutis anserina und Arrectores pilorum. Gefässe. Capillaren. Contractile Gefässe.

Die normalen Gewebe lassen sich ohne Zwang in drei Kategorien eintheilen: Entweder man hat Gewebe, welche einzig und allein aus Zellen bestehen, in welchen Zelle an Zelle liegt, also in dem modernen Sinne Zellengewebe. Oder es sind Gewebe, in welchen regelmässig eine Zelle von der andern getrennt ist durch eine gewisse Zwischenmasse (Intercellularsubstanz), in welchen also eine Art von Bindemittel existirt, das die einzelnen Elemente in sichtbarer Weise aneinander, aber auch auseinander hält. Hierher gehören die Gewebe, welche man heut zu Tage gewöhnlich unter dem Namen der Gewebe der Bindesubstanz zusammenfasst, und in welche als Hauptmasse dasjenige eintritt, was man früherhin allgemein Zellgewebe nannte. Endlich gibt es eine dritte Gruppe von Geweben, in welchen specifische Ausbildungen der Zellen Statt gefunden haben, vermöge deren sie eine ganz eigenthümliche Einrichtung erlangt haben, zum Theil so eigenthümlich, wie sie einzig und allein der thierischen Oekonomie zukommt. Diese Gewebe höherer Ordnung sind es, welche eigentlich den Character des Thieres ausmachen, wenngleich einzelne unter ihnen Uebergänge zu Pflanzenformen darbieten. Hierher gehören die Nerven- und Muskelapparate, die Gefässe und das Blut. Damit ist die Reihe der Gewebe abgeschlossen.

Eine solche Gruppirung der histologischen Erfahrungen unterscheidet sich sehr wesentlich von derjenigen, welche nach dem Vorgange von Bichat so lange die allgemeine Anatomie beherrscht hat. Die Gewebe der älteren Schule stellten zu einem grossen Theile nicht so sehr dasjenige dar, was wir heute als die Gegenstände der allgemeinen Histologie betrachten, sondern vielmehr das, was wir als den Inhalt der speciellen Histologie bezeichnen müssen. Wenn man die Sehnen, die Knochen, die Fascien als besondere Gewebe nimmt, so giebt dies eine ausserordentliche Mannichfaltigkeit von Kategorien (Bichat hatte deren 21), aber es entsprechen ihnen nicht eben so viele einfache Gewebsformen.

In unserem Sinne lässt das ganze anatomische Gebiet sich zunächst zerlegen nach allgemein-histologischen Kategorien (eigentliche Gewebe). Die specielle Histologie beschäftigt sich sodann mit dem Falle, wo eine Zusammenfügung von zum Theil sehr verschiedenartigen Geweben zu einem einzigen Ganzen (Organ) Statt findet. Wir sprechen z. B. mit Recht von Knochengewebe, allein dieses Gewebe, die Tela ossea im allgemein-histologischen Sinne, bildet für sich keinen Knochen, denn kein Knochen besteht durch und durch, einzig und allein aus Tela ossea, sondern es gehören dazu mit einer gewissen Nothwendigkeit mindestens Periost und Gefässe. Ja, von dieser einfachen Vorstellung eines Knochens unterscheidet sich die jedes grösseren, z. B. eines Röhrenknochens: dies ist ein wirkliches Organ, in dem wir wenigstens vier verschiedene Gewebe unterscheiden. Wir haben da die eigentliche Tela ossea, die Knorpellage am Gelenk, die Bindegewebsschicht des Periosts, das eigenthümliche Mark. Jeder dieser einzelnen Theile kann wieder eine innere Verschiedenartigkeit der zusammensetzenden Bestandtheile darbieten; es gehen z. B. Gefässe und Nerven mit in die Zusammensetzung des Markes, der Beinhaut u. s. f. ein. Alles dies zusammengenommen, giebt erst den vollen Organismus eines Knochens. Bevor man also zu den eigentlichen Systemen oder Apparaten, dem speciellen Vorwurfe der descriptiven Anatomie kommt, hat man eine ganze Stufenfolge zu durchlaufen. Man muss sich daher bei Diskussionen mit Anderen immer erst klar werden, was in Frage ist. Wenn man Knochen und Knochengewebe zusammenwirft, so gibt dies eine eben so grosse Verwirrung, als wenn man Nerven- und Gehirnmasse einfach identificiren wollte. Das Gehirn enthält viele Dinge, die nicht nervös sind, und seine physiologischen und pathologischen Zustände lassen sich nicht begreifen, wenn man sie auf eine Zusammenordnung rein nervöser Theile bezieht, wenn man nicht neben den Nerven auf die Häute, das Zwischengewebe, die Gefässe Rücksicht nimmt.

Betrachten wir nun die erste allgemein-histologische Gruppe etwas genauer, nämlich die einfachen Zellengewebe, so ist unzweifelhaft am leichtesten übersichtlich die Horn- oder Epithelialformation, wie wir sie in der Epidermis und dem Rete Malpighii an der äussern Oberfläche, im Cylinder- und Plattenepithelium auf den Schleim- und serösen Häuten antreffen. Der Name Epithelium stammt von Ruysch, der zuerst an der Brustwarze ϑηλή ein ablösbares Häutchen auffand, welches er weiterhin in ähnlicher Weise auch an Schleimhäuten nachwies. Heusinger hat das Verdienst, den Zusammenhang aller Horngebilde dargelegt zu haben, indem er die chemische und physikalische Uebereinstimmung derselben lehrte. Das allgemeine Schema ist hier, dass Zelle an Zelle stösst, so dass in dem günstigsten Falle, wie bei der Pflanze, vier- oder sechseckige Zellen unmittelbar sich an einander schliessen und zwischen ihnen nichts Anderes weiter, als höchstens eine geringe Kittsubstanz, gefunden wird. So ist es an manchen Orten mit dem Platten- oder Pflasterepithel (Fig. 17). Die besonderen Formen der Epithelialzellen sind offenbar grossentheils Druckwirkungen. Wenn alle Elemente eines Zellengewebes eine vollkommene Regelmässigkeit haben sollen, so setzt dies voraus, dass sich alle Elemente völlig gleichmässig entwickeln und gleichzeitig vergrössern. Geschieht ihre Entwickelung dagegen unter Verhältnissen, wo nach einer Seite hin ein geringerer Widerstand besteht, so kann es sein, dass die Elemente, wie bei den Säulen- oder Cylinderepithelien, nur in einer Richtung auswachsen und sehr lang werden, während sie in den andern Richtungen sehr dünn bleiben. Aber auch ein solches Element wird, auf einem Querschnitt angesehen, sich als ein sechseckiges darstellen: wenn wir Cylinder-Epithel von der freien Fläche her betrachten, so sehen wir auch bei ihm ganz regelmässig polygonale Formen (Fig. 15, b).


Fig. 15. Säulen- oder Cylinderepithel der Gallenblase. a. Vier zusammenhängende Zellen, von der Seite gesehen, mit Kern und Kernkörperchen, der Inhalt leicht längs gestreift, am freien Rande (oben) ein dickerer, fein radiär gestreifter Saum. b. Aehnliche Zellen, halb von der freien Fläche (oben, aussen) gesehen, um die sechseckige Gestalt des Querschnittes und den dicken Randsaum zu zeigen. c. Durch Imbibition veränderte, etwas aufgequollene und am oberen Saum aufgefaserte Zellen.


Im Gegensatze dazu finden sich ausserordentlich unregelmässige Formen an solchen Orten, wo die Zellen in unregelmässiger Weise hervorwachsen, so besonders constant an der Oberfläche der Harnwege (Fig. 16), in der ganzen Ausdehnung der Schleimhaut von den Nierenkelchen bis zur Urethra. An allen diesen Stellen trifft man sehr gewöhnlich Anordnungen, wo einzelne Zellen an dem einen Ende rund sind, während sie an dem anderen in eine Spitze auslaufen, andere Zellen ziemlich grobe Spindeln darstellen, andere wieder an einer Seite platt abgerundet, an der anderen ausgebuchtet sind, oder wo eine Zelle sich so zwischen andere einschiebt, dass sie eine kolbige oder zackige Form annimmt. Immer entspricht hier die eine Zelle der Form der Lücke zwischen den anderen, und es ist nicht die Eigenthümlichkeit der Zelle, welche die Form bedingt, sondern die Art ihrer Lagerung, das Nachbarverhältniss, die Abhängigkeit von der Anordnung der nächsten Theile. In der Richtung des geringeren Widerstandes bekommen die Zellen Spitzen, Zacken und Fortsätze der mannichfaltigsten Art. Diese Art von Epithel nannte  man, da sie sich nicht recht unterbringen liess, mit Henle Uebergangs-Epithel, weil sie schliesslich gewöhnlich in deutliches Platten- oder Cylinderepithel übergeht. Zuweilen ist dies aber nicht der Fall und man könnte ebenso gut einen anderen Namen dafür einführen. Sie stellt das Vorbild zu der vielbesprochenen Polymorphie gewisser pathologischer Epithelialzellen, z. B. der Krebszellen dar.

An der Oberhaut (Epidermis) haben wir den günstigen Fall, dass eine Reihe von Zellenlagen über einander liegt, was an vielen Schleimhäuten nicht der Fall ist. Es lassen sich daher die jungen Lagen (das Rete Malpighii oder die Schleimschicht der früheren Autoren) von den älteren (der eigentlichen Epidermis) bequem trennen.


Fig. 16. Uebergangsepithel der Harnblase. a. Eine grössere, am Rande ausgebuchtete Zelle mit keulen- und spindelförmigen, feineren Zellen besetzt, b. dasselbe: die grössere Zelle mit zwei Kernen. c. Eine grössere, unregelmässig eckige Zelle mit vier Kernen. d. Eine ähnliche mit zwei Kernen und 9 von der Fläche aus gesehenen Gruben, den Randausbuchtungen entsprechend (vgl. Archiv f. path. Anat. u. Phys. Bd. III. Taf. I. Fig 8.)


Wenn man einen senkrechten Durchschnitt der Hautoberfläche betrachtet, so erblickt man zumeist nach aussen ein sehr dichtes, verschieden dickes Stratum, welches aus lauter platten Elementen besteht, die von der Seite her wie einfache Linien aussehen. Man könnte sie bei dieser Betrachtung für Fasern halten, welche übereinander geschichtet mit leichten Niveau-Verschiedenheiten die ganze Oberhaut zusammensetzen. Von der Fläche aus gesehen, erweisen sie sich jedoch als rundlich-ovale Plättchen, die bei Einwirkung von Alkalien sich zu dickeren, linsenförmigen Körpern aufblähen. Unterhalb dieser Lagen folgt in verschiedener Mächtigkeit das sogenannte Rete Malpighii, welches unmittelbar bis an die Papillen der Haut (Lederhaut, Cutis, Corium) reicht. Untersuchen wir nun die Grenze zwischen Epidermis und Rete, so ergibt sich fast bei allen Arten der Betrachtung, dass fast plötzlich an die innerste Lage der Epidermis sich Elemente anschliessen, die zunächst noch immer platt sind, aber doch schon einen grösseren Dickendurchmesser haben, innerhalb deren man sehr deutlich Kerne erkennt, welche in den Plättchen der Epidermis fehlen. Diese ziemlich grossen Elemente stellen den Uebergang dar von den ältesten Schichten des Rete Malpighii zu den jüngsten der Epidermis. Hier ist der Punkt, von wo aus sich die Epidermis regenerirt, welche ihrerseits eine träge Masse darstellt die an der Oberfläche durch Reibung und Abblätterung allmählich entfernt wird. Und hier ist im Allgemeinen auch die Grenze, wo die pathologischen Processe einsetzen. Je weiter wir gegen die Tiefe hin untersuchen, um so kleiner werden die Elemente; die letzten stehen als kleine Cylinder auf der Oberfläche der Hautpapillen (Fig. 17, r, r).


Fig. 17. Senkrechter Schnitt durch die Oberfläche der Haut von der Zehe, mit Essigsäure behandelt. P. P. Spitzen durchschnittener Papillen, in denen man je eine Gefässschlinge und daneben kleine spindelförmige und an der Basis netzförmige Bindegewebselemente bemerkt: links eine Ausbiegung der Papille, entsprechend einem nicht mehr dargestellten, tiefer gelegenen Tastkörperchen. R. R. Das Rete Malpighii, zunächst an der Papille eine sehr dichte Lage kleiner cylinderförmiger Zellen (r, r), nach aussen immer grösser werdende polygonale Zellen. E. Epidermis, aus platten, dichteren Zellenlagen bestehend. S. S. Ein durchtretender Schweisskanal. – Vergröss. 300.


Im Grossen ist das Verhältniss der verschiedenen Schichten an der ganzen Hautoberfläche überall dasselbe, so mannichfaltig auch im Einzelnen die Besonderheiten sein mögen, welche sie in Beziehung auf Dicke, Lagerung, Festigkeit und Zusammenfügung darbieten. Ein Durchschnitt z. B. des Nagels, der seiner äusseren Erscheinung nach gewiss weit von der gewöhnlichen Oberhaut abweicht, zeigt doch im Allgemeinen dasselbe Bild, wie diese; er unterscheidet sich nur in einem Punkte wesentlich, nehmlich dadurch, dass sich an ihm zwei verschiedene epidermoidale Gebilde übereinanderschieben. Dadurch entsteht eine Complication, die, wenn man sie nicht erkennt, zu der Annahme gewisser specifischer Verschiedenheiten des Nagels von anderen Theilen der Epidermis führen kann, während sie doch nur durch eine eigenthümliche Verschiebung gewisser Epidermislagen gegen andere bedingt ist. Die äusserst dichten und festen Plättchen, welche den frei zu Tage liegenden Theil, das sogenannte Nagelblatt, zusammensetzen, lassen sich auf verschiedene Weise wieder in Formen zurückführen, in denen sie das gewöhnliche Bild von Zellen darbieten; am deutlichsten durch Behandlung mit einem Alkali, wo ein jedes Plättchen zu einer grossen, rundlich-ovalen Blase anschwillt.

In den oberen Schichten der Oberhaut werden die Zellen überall platter, und in den äussersten findet man, wie gesagt, gar keine Kerne mehr. Trotzdem besteht kein ursprünglicher Unterschied zwischen der Epidermis und dem Rete Malpighii; das letztere ist vielmehr die Bildungsstätte (Matrix) der Epidermis oder die jüngste Epidermislage selbst, insofern von hieraus immer neue Theile sich ansetzen, sich abplatten und in die Höhe rücken, in dem Maasse, als aussen durch Waschen, Reiben u. s. w. Theile verloren gehen. Auch zwischen der untersten Schicht des Rete und der Oberfläche der Cutis gibt es keine weitere Zwischenlage mehr, keine amorphe Flüssigkeit, kein Blastem, das in sich Zellen bilden könnte; die Zellen sitzen direct auf der Bindegewebspapille der Cutis auf. Es ist hier nirgends ein Raum, wie man noch vor Kurzem dachte, in welchen aus den Papillen und den in ihnen enthaltenen Gefässen Flüssigkeit transsudirte, damit aus und in derselben neue Elemente durch freie Urzeugung entständen und hervorwüchsen. Eine blosse Schleimschicht, welche als Cytoblastem für die neuen Zellen diente, ist absolut nicht wahrnehmbar. Durch die ganze Reihe der Zellenlagen des Rete und der Epidermis besteht dasselbe Continuitätsverhältniss, wie man es an der Rinde eines Baumes kennt. Die Rindenschicht einer Kartoffel (Fig. 2) zeigt in gleicher Weise aussen korkhaltige epidermoidale Elemente und darunter, wie im Rete Malpighii, eine Lage kernhaltiger Zellen, das Cambium, welches die Matrix des Nachwuchses für die Rinde darstellt.

Sehr ähnlich verhält es sich am Nagel. Betrachtet man den Durchschnitt eines Nagels, quer auf die Längsrichtung des Fingers, so sieht man dieselbe Anordnung, wie an der gewöhnlichen Haut, nur entspricht jede einzelne Ausbuchtung der unteren Fläche nicht einer zapfenförmigen Verlängerung der Cutis, einer Papille, sondern einer Leiste, welche über die ganze Länge des Nagelbettes hinläuft und welche mit den Leisten zu vergleichen ist, die an der Volarseite der Finger zu sehen sind. Auf diesen Leisten des Nagelbettes befinden sich sehr niedrige und verkommene Papillen, an deren Oberfläche das mehr cylindrisch gestaltete jüngste Lager des Rete Malpighii aufsitzt; daran schliessen sich immer grössere Elemente an, und endlich folgt eine hornig-blätterige Schicht, welche der Epidermis entspricht.

Es ist jedoch, um dies gleich vorweg zu nehmen, da wir auf den Nagel nicht wieder zu sprechen kommen werden, seine Zusammensetzung deshalb schwierig zu ermitteln gewesen, weil man sich ihn als einheitliches Gebilde gedacht hat. Daher hat sich der Streit hauptsächlich um die Frage gedreht, wo die Matrix des Nagels sei, ob er von der ganzen Fläche wachse, oder nur von dem kleinen Falz, in welchem er hinten steckt. Die eigentliche feste Masse, das compacte Nagelblatt, wächst allerdings nur von hinten her und schiebt sich über die Fläche des sogenannten Nagelbettes hinweg, aber das Nagelbett erzeugt seinerseits eine bestimmte Masse von Zellen, die als Aequivalente einer Epidermislage zu betrachten sind. Macht man einen Durchschnitt durch die Mitte eines Nagels, so kommt man zu äusserst auf das von hinten gewachsene Nagelblatt, dann auf die losere Substanz, welche von dem Nagelbett abgesondert ist, dann auf das Rete Malpighii, und endlich auf die Leisten, auf welchen der Nagel ruht6. Es combiniren sich also in der Nagelbildung zwei Epidermoidalstrata: ein äusseres oder oberes, dessen Matrix das Rete im Falz ist, und ein inneres oder unteres, dessen Matrix das Rete des Bettes ist.

So begreift man, dass das Nagelblatt bis zu einem gewissen Maasse locker liegt und sich leicht vorwärts bewegen kann, indem es sich auf einer beweglichen Unterlage vorschiebt. Aber es ist auch sofort zu verstehen, wie leicht man sich in der Deutung des Bildes, welches senkrechte Durchschnitte durch den Nagel gewähren, täuschen kann, und wie nahe es liegt, anzunehmen, auch das Nagelblatt beziehe seine Elemente wenigstens zum Theil aus der Matrix des Bettes. Es fügen sich jedoch die von letzterer gelieferten Elemente nur lose der unteren Fläche des Nagelblattes an. Diese Fläche besitzt daher, entsprechend den erwähnten Leisten, seichte Ausbuchtungen, so dass der wachsende Nagel, indem er über die Leisten fortgleitet, seitliche Bewegungen nur innerhalb beschränkter Grenzen machen kann. Man kann daher sagen: es bewegt sich das von hinten wachsende Nagelblatt über ein Polster von lockerer Epidermismasse nach vorn (Fig. 18, a) in Rinnen, welche zwischen den längslaufenden Leisten oder Falten des Nagelbettes gelegen sind. Das Nagelblatt selbst, frisch untersucht, besteht dagegen aus einer so dichten Masse, dass man einzelne Zellen daran kaum zu unterscheiden im Stande ist, ja, dass man ein Bild bekommt, wie an manchen Stellen im Knorpel. Aber durch Behandlung mit Kali, welches die Zellen aufquellen macht und von einander trennt, kann man sich überzeugen, dass er überall nur aus Epidermiszellen besteht.


Fig. 18. Schematische Darstellung des Längsdurchschnittes vom Nagel. a. Das normale Verhältniss: leicht gekrümmtes, horizontales Nagelblatt, in seinem Falze steckend und durch ein schwaches Polster von dem Nagelbette getrennt. b. Stärker gekrümmtes und etwas dickeres Nagelblatt mit stark verdicktem Polster und stärker gewölbtem Nagelbette, der Falz kürzer und weiter. c. Onychogryphosis: das kurze und dicke Nagelblatt steil aufgerichtet, der Falz kurz und weit, das Nagelbett auf der Fläche eingebogen, das Polster sehr dick und aus übereinander geschichteten Lagen von lockeren Zellen bestehend.


Kennt man diese Entwickelung, so lassen sich die Krankheiten des Nagels in leicht fasslicher Weise von einander scheiden. Es gibt nehmlich Krankheiten des Nagelbettes, welche das Wachsthum des Nagelblattes nicht ändern, aber Dislocationen desselben bedingen. Wenn auf dem Nagelbette eine sehr reichliche Entwickelung von Polstermasse stattfindet, so kann das Nagelblatt in die Höhe gehoben werden (Fig. 18, b), ja es kommt, namentlich an den Zehen, nicht selten vor, dass es, statt horizontal, senkrecht in die Höhe wächst und der Raum unter ihm von dicken Anhäufungen des blätterigen Polsters erfüllt wird (Fig. 18, c). Selbst Eiterungen können auf dem Nagelbette stattfinden, ohne dass die Entwickelung des Nagelblattes dadurch gehindert wird. Die sonderbarsten Veränderungen zeigen sich bei den Pocken. Wenn eine Blatter auf dem Nagelbett sich bildet, so bekommt der Nagel nur eine gelbliche, etwas unebene Stelle; entwickelt sich dagegen die Pocke im Nagelfalze, so sieht man Wochen nachher das Bild der Pocke in einer kreisförmig vertieften, wie ausgeschnittenen Stelle des sich allmählich vorschiebenden Nagelblattes, als einen Beweis des Ausfalls von Elementen, gerade wie auf der Epidermis. Denn jede Krankheit, welche den Nagelfalz (die Matrix) trifft, ändert auch das Nagelblatt, und wenn der Falz zerstört wird, so kann ein wirkliches Blatt nicht mehr nachgebildet werden; das Bett bedeckt sich dann nur mit einer hornigen, unregelmässig geschichteten Masse, wie sie sich zuweilen auch auf grossen Narben anderer Hautstellen, namentlich nach partiellen Amputationen des Fusses, erzeugt. —

5.Der neueste Versuch von Pouchet, die Lehre von der Urzeugung wenigstens für Pilze und Infusorien wieder einzusetzen, darf wohl durch die vortrefflichen Experimente von Pasteur als zurückgeschlagen angesehen werden. Trotzdem wird das theoretische Bedürfniss, eine natürliche Schöpfungsgeschichte zu construiren, begreiflicherweise immer von Neuem zu der Annahme einer Urzeugung führen, wenn man sie auch allmählich auf die allerkleinsten Micrococci oder auf gestaltlose Protisten beschränkt. Das Bedürfniss erkenne ich an, aber die Thatsachen streiten dagegen, und am allerwenigsten gestatten sie für die Pathologie eine Ausnahme.
6.Vgl. meine Abhandlung zur normalen und pathologischen Anatomie der Nagel und der Oberhaut, insbesondere über hornige Entartung und Pilzbildung an den Nägeln. Vgl. Würzb. Verhandl. 1854. V. 83.
Yaş sınırı:
12+
Litres'teki yayın tarihi:
30 haziran 2018
Hacim:
863 s. 156 illüstrasyon
Telif hakkı:
Public Domain