Kitabı oku: «First Principles», sayfa 18
CHAPTER VIII.
THE PERSISTENCE OF FORCE. 12
§ 72. Before taking a first step in the rational interpretation of Evolution, it is needful to recognize, not only the facts that Matter is indestructible and Motion continuous, but also the fact that Force persists. An attempt to assign the causes of Evolution, would manifestly be absurd, if that agency to which the metamorphosis in general and in detail is due, could either come into existence or cease to exist. The succession of phenomena would in such case be altogether arbitrary; and deductive science impossible.
Here, indeed, the necessity is even more imperative than in the two preceding cases. For the validity of the proofs given that Matter is indestructible and Motion continuous, really depends upon the validity of the proof that Force is persistent. An analysis of the reasoning demonstrated that in both cases, the à posteriori conclusion involves the assumption that unchanged quantities of Matter and Motion are proved by unchanged manifestations of Force; and in the à priori cognition we found this to be the essential constituent. Hence, that the quantity of Force remains always the same, is the fundamental cognition in the absence of which these derivative cognitions must disappear.
§ 73. But now on what grounds do we assert the persistence of Force? Inductively we can allege no evidence except such as is presented to us throughout the world of sensible phenomena. No force however, save that of which we are conscious during our own muscular efforts, is immediately known to us. All other force is mediately known through the changes we attribute to it. Since, then, we cannot infer the persistence of Force from our own sensation of it, which does not persist; we must infer it, if it is inferred at all, from the continuity of Motion, and the undiminished ability of Matter to produce certain effects. But to reason thus is manifestly to reason in a circle. It is absurd to allege the indestructibility of Matter, because we find experimentally that under whatever changes of form a given mass of matter exhibits the same gravitation, and then afterwards to argue that gravitation is constant because a given mass of matter exhibits always the same quantity of it. We cannot prove the continuity of Motion by assuming that Force is persistent, and then prove the persistence of Force by assuming that Motion is continuous.
The data of both objective and subjective science being involved in this question touching the nature of our cognition that Force is persistent, it will be desirable here to examine it more closely. At the risk of trying the reader’s patience, we must reconsider the reasoning through which the indestructibility of Matter and the continuity of Motion are established; that we may see how impossible it is to arrive by parallel reasoning at the persistence of Force. In all three cases the question is one of quantity: – does the Matter, or Motion, or Force, ever diminish in quantity? Quantitative science implies measurement; and measurement implies a unit of measure. The units of measure from which all others of any exactness are derived, are units of linear extension. From these, through the medium of the equal-armed lever or scales, we derive our equal units of weight, or gravitative force. And it is by means of these equal units of extension and equal units of weight, that we make those quantitative comparisons by which the truths of exact science are reached. Throughout the investigations leading the chemist to the conclusion that of the carbon which has disappeared during combustion, no portion has been lost, and that in any compound afterwards formed by the resulting carbonic acid the whole of the original carbon is present, what is his repeatedly assigned proof? That afforded by the scales. In what terms is the verdict of the scales given? In grains – in units of weight – in units of gravitative force. And what is the total content of the verdict? That as many units of gravitative force as the carbon exhibited at first, it exhibits still. The quantity of matter is asserted to be the same, if the number of units of force it counter-balances is the same. The validity of the inference, then, depends entirely upon the constancy of the units of force. If the force with which the portion of metal called a grain-weight, tends towards the Earth, has varied, the inference that Matter is indestructible is vicious. Everything turns on the truth of the assumption that the gravitation of the weights is persistent; and of this no proof is assigned, or can be assigned. In the reasonings of the astronomer there is a like implication; from which we may draw the like conclusion. No problem in celestial physics can be solved without the assumption of some unit of force. This unit need not be, like a pound or a ton, one of which we can take direct cognizance. It is requisite only that the mutual attraction which some two of the bodies concerned exercise at a given distance, should be taken as one; so that the other attractions with which the problem deals, may be expressed in terms of this one. Such unit being assumed, the momenta which the respective masses will generate in each other in a given time, are calculated; and compounding these with the momenta they already have, their places at the end of that time are predicted. The prediction is verified by observation. From this, either of two inferences may be drawn. Assuming the masses to be fixed, the motion may be proved to be undiminished; or assuming the motion to be undiminished, the masses may be proved to be fixed. But the validity of one or other inference, depends wholly on the truth of the assumption that the unit of force is unchanged. Let it be supposed that the gravitation of the two bodies towards each other at the given distance, has varied, and the conclusions drawn are no longer true. Nor is it only in their concrete data that the reasonings of terrestrial and celestial physics assume the persistence of Force. They equally assume it in the abstract principle with which they set out; and which they repeat in justification of every step. The equality of action and reaction is taken for granted from beginning to end of either argument; and to assert that action and reaction are equal and opposite, is to assert that Force is persistent. The allegation really amounts to this, that there cannot be an isolated force beginning and ending in nothing; but that any force manifested, implies an equal antecedent force from which it is derived, and against which it is a reaction. Further, that the force so originating cannot disappear without result; but must expend itself in some other manifestation of force, which, in being produced, becomes its reaction; and so on continually. Clearly then the persistence of Force is an ultimate truth of which no inductive proof is possible.
We might indeed be certain, even in the absence of any such analysis as the foregoing, that there must exist some principle which, as being the basis of science, cannot be established by science. All reasoned-out conclusions whatever, must rest on some postulate. As before shown (§ 23), we cannot go on merging derivative truths in those wider and wider truths from which they are derived, without reaching at last a widest truth which can be merged in no other, or derived from no other. And whoever contemplates the relation in which it stands to the truths of science in general, will see that this truth transcending demonstration is the persistence of Force.
§ 74. But now what is the force of which we predicate persistence? It is not the force we are immediately conscious of in our own muscular efforts; for this does not persist. As soon as an outstretched limb is relaxed, the sense of tension disappears. True, we assert that in the stone thrown or in the weight lifted, is exhibited the effect of this muscular tension; and that the force which has ceased to be present in our consciousness, exists elsewhere. But it does not exist elsewhere under any form cognizable by us. It was proved (§ 18), that though, on raising an object from the ground, we are obliged to think of its downward pull as equal and opposite to our upward pull; and though it is impossible to represent these pulls as equal without representing them as like in kind; yet, since their likeness in kind would imply in the object a sensation of muscular tension, which cannot be ascribed to it, we are compelled to admit that force as it exists out of our consciousness, is not force as we know it. Hence the force of which we assert persistence is that Absolute Force of which we are indefinitely conscious as the necessary correlate of the force we know. Thus, by the persistence of Force, we really mean the persistence of some Power which transcends our knowledge and conception. The manifestations, as occurring either in ourselves or outside of us, do not persist; but that which persists is the Unknown Cause of these manifestations. In other words, asserting the persistence of Force, is but another mode of asserting an Unconditioned Reality, without beginning or end.
Thus, quite unexpectedly, we come down once more to that ultimate truth in which, as we saw, Religion and Science coalesce. On examining the data underlying a rational theory of Evolution, we find them all at last resolvable into that datum without which consciousness was shown to be impossible – the continued existence of an Unknowable as the necessary correlative of the Knowable. Once commenced, the analysis of the truths taken for granted in scientific inquiries, inevitably brings us down to this deepest truth, in which Common Sense and Philosophy are reconciled.
The arguments and conclusion contained in this and the foregoing three chapters, supply, indeed, the complement to the arguments and conclusion set forth in the preceding part of this work. It was there first shown, by an examination of our ultimate religious ideas, that knowledge of Absolute Being is impossible; and the impossibility of knowing Absolute Being, was also shown by an examination of our ultimate scientific ideas. In a succeeding chapter a subjective analysis proved, that while, by the very conditions of thought, we are prevented from knowing anything beyond relative being; yet that by these very same conditions of thought, an indefinite consciousness of Absolute Being is necessitated. And here, by objective analysis, we similarly find that the axiomatic truths of physical science, unavoidably postulate Absolute Being as their common basis.
Thus there is even a more profound agreement between Religion and Science than was before shown. Not only are they wholly at one on the negative proposition that the Non-relative cannot be known; but they are wholly at one on the positive proposition that the Non-relative is an actual existence. Both are obliged by the demonstrated untenability of their supposed cognitions, to confess that the Ultimate Reality is incognizable; and yet both are obliged to assert the existence of an Ultimate Reality. Without this, Religion has no subject-matter; and without this, Science, subjective and objective, lacks its indispensable datum. We cannot construct a theory of internal phenomena without postulating Absolute Being; and unless we postulate Absolute Being, or being which persists, we cannot construct a theory of external phenomena.
§ 75. A few words must be added respecting the nature of this fundamental consciousness. Already it has been looked at from several points of view; and here it seems needful finally to sum up the results.
In Chapter IV. we saw that the Unknown Power of which neither beginning nor end can be conceived, is present to us as that unshaped material of consciousness which is shaped afresh in every thought. Our inability to conceive its limitation, is thus simply the obverse of our inability to put an end to the thinking subject while still continuing to think. In the two foregoing chapters, we contemplated this fundamental truth under another aspect. The indestructibility of Matter and the continuity of Motion, we saw to be really corollaries from the impossibility of establishing in thought a relation between something and nothing. What we call the establishment of a relation in thought, is the passage of the substance of consciousness, from one form into another. To think of something becoming nothing, would involve that this substance of consciousness having just existed under a given form, should next assume no form; or should cease to be consciousness. And thus our inability to conceive Matter and Motion destroyed, is our inability to suppress consciousness itself. What, in these two foregoing chapters, was proved true of Matter and Motion, is, à fortiori, true of the Force out of which our conceptions of Matter and Motion are built. Indeed, as we saw, that which is indestructible in matter and motion, is the force they present. And, as we here see, the truth that Force is indestructible, is the obverse of the truth that the Unknown Cause of the changes going on in consciousness is indestructible. So that the persistence of consciousness, constitutes at once our immediate experience of the persistence of Force, and imposes on us the necessity we are under of asserting its persistence.
§ 76. Thus, in all ways there is forced on us the fact, that here is an ultimate truth given in our mental constitution. It is not only a datum of science, but it is a datum which even the assertion of our nescience involves. Whoever alleges that the inability to conceive a beginning or end of the Universe, is a negative result of our mental structure, cannot deny that our consciousness of the Universe as persistent, is a positive result of our mental structure. And this persistence of the Universe, is the persistence of that Unknown Cause, Power, or Force, which is manifested to us through all phenomena.
Such then is the foundation of any possible system of positive knowledge. Deeper than demonstration – deeper even than definite cognition – deep as the very nature of mind, is the postulate at which we have arrived. Its authority transcends all other whatever; for not only is it given in the constitution of our own consciousness, but it is impossible to imagine a consciousness so constituted as not to give it. Thought, involving simply the establishment of relations, may be readily conceived to go on while yet these relations have not been organized into the abstracts we call Space and Time; and so there is a conceivable kind of consciousness which does not contain the truths, commonly called à priori, involved in the organization of these forms of relations. But thought cannot be conceived to go on without some element between which its relations may be established; and so there is no conceivable kind of consciousness which does not imply continued existence as its datum. Consciousness without this or that particular form is possible; but consciousness without contents is impossible.
The sole truth which transcends experience by underlying it, is thus the persistence of Force. This being the basis of experience, must be the basis of any scientific organization of experiences. To this an ultimate analysis brings us down; and on this a rational synthesis must build up.
CHAPTER IX.
THE CORRELATION AND EQUIVALENCE OF FORCES
§ 77. When, to the unaided senses, Science began to add supplementary senses in the shape of measuring instruments, men began to perceive various phenomena which eyes and fingers could not distinguish. Of known forms of force, minuter manifestations became appreciable; and forms of force before unknown were rendered cognizable and measurable. Where forces had apparently ended in nothing, and had been carelessly supposed to have actually done so, instrumental observation proved that effects had in every instance been produced: the forces reappearing in new shapes. Hence there has at length arisen the inquiry whether the force displayed in each surrounding change, does not in the act of expenditure undergo metamorphosis into an equivalent amount of some other force or forces. And to this inquiry experiment is giving an affirmative answer, which becomes day by day more decisive. Grove, Helmholtz, and Meyer, are more than any others to be credited with the clear enunciation of this doctrine. Let us glance at the evidence on which it rests.
Motion, wherever we can directly trace its genesis, we find to pre-exist as some other mode of force. Our own voluntary acts have always certain sensations of muscular tension as their antecedents. When, as in letting fall a relaxed limb, we are conscious of a bodily movement requiring no effort, the explanation is that the effort was exerted in raising the limb to the position whence it fell. In this case, as in the case of an inanimate body descending to the Earth, the force accumulated by the downward motion is just equal to the force previously expended in the act of elevation. Conversely, Motion that is arrested produces, under different circumstances, heat, electricity, magnetism, light. From the warming of the hands by rubbing them together, up to the ignition of a railway-brake by intense friction – from the lighting of detonating powder by percussion, up to the setting on fire a block of wood by a few blows from a steam-hammer; we have abundant instances in which heat arises as Motion ceases. It is uniformly found, that the heat generated is great in proportion as the Motion lost is great; and that to diminish the arrest of motion, by diminishing the friction, is to diminish the quantity of heat evolved. The production of electricity by Motion is illustrated equally in the boy’s experiment with rubbed sealing-wax, in the common electrical machine, and in the apparatus for exciting electricity by the escape of steam. Wherever there is friction between heterogeneous bodies, electrical disturbance is one of the consequences. Magnetism may result from Motion either immediately, as through percussion on iron, or mediately as through electric currents previously generated by Motion. And similarly, Motion may create light; either directly, as in the minute incandescent fragments struck off by violent collisions, or indirectly, as through the electric spark. “Lastly, Motion may be again reproduced by the forces which have emanated from Motion; thus, the divergence of the electrometer, the revolution of the electrical wheel, the deflection of the magnetic needle, are, when resulting from frictional electricity, palpable movements reproduced by the intermediate modes of force, which have themselves been originated by motion.”
That mode of force which we distinguish as Heat, is now generally regarded by physicists as molecular motion – not motion as displayed in the changed relations of sensible masses to each other, but as occurring among the units of which such sensible masses consist. If we cease to think of Heat as that particular sensation given to us by bodies in certain conditions, and consider the phenomena otherwise presented by these bodies, we find that motion, either in them or in surrounding bodies, or in both, is all that we have evidence of. With one or two exceptions which are obstacles to every theory of Heat, heated bodies expand; and expansion can be interpreted only as a movement of the units of a mass in relation to each other. That so-called radiation through which anything of higher temperature than things around it, communicates Heat to them, is clearly a species of motion. Moreover, the evidence afforded by the thermometer that Heat thus diffuses itself, is simply a movement caused in the mercurial column. And that the molecular motion which we call Heat, may be transformed into visible motion, familiar proof is given by the steam-engine; in which “the piston and all its concomitant masses of matter are moved by the molecular dilatation of the vapour of water.” Where Heat is absorbed without apparent result, modern inquiries show that decided though unobtrusive changes are produced: as on glass, the molecular state of which is so far changed by heat, that a polarized ray of light passing through it becomes visible, which it does not do when the glass is cold; or as on polished metallic surfaces, which are so far changed in structure by thermal radiations from objects very close to them, as to retain permanent impressions of such objects. The transformation of Heat into electricity, occurs when dissimilar metals touching each other are heated at the point of contact: electric currents being so induced. Solid, incombustible matter introduced into heated gas, as lime into the oxyhydrogen flame, becomes incandescent; and so exhibits the conversion of Heat into light. The production of magnetism by Heat, if it cannot be proved to take place directly, may be proved to take place indirectly through the medium of electricity. And through the same medium may be established the correlation of Heat and chemical affinity – a correlation which is indeed implied by the marked influence that Heat exercises on chemical composition and decomposition.
The transformations of Electricity into other modes of force, are still more clearly demonstrable. Produced by the motion of heterogeneous bodies in contact, Electricity, through attractions and repulsions, will immediately reproduce motion in neighbouring bodies. Now a current of Electricity generates magnetism in a bar of soft iron; and now the rotation of a permanent magnet generates currents of Electricity. Here we have a battery in which from the play of chemical affinities an electric current results; and there, in the adjacent cell, we have an electric current effecting chemical decomposition. In the conducting wire we witness the transformation of Electricity into heat; while in electric sparks and in the voltaic arc we see light produced. Atomic arrangement, too, is changed by Electricity: as instance the transfer of matter from pole to pole of a battery; the fractures caused by the disruptive discharge; the formation of crystals under the influence of electric currents. And whether, conversely, Electricity be or be not directly generated by re-arrangement of the atoms of matter, it is at any rate indirectly so generated through the intermediation of magnetism.
How from Magnetism the other physical forces result, must be next briefly noted – briefly, because in each successive case the illustrations become in great part the obverse forms of those before given. That Magnetism produces motion is the ordinary evidence we have of its existence. In the magneto-electric machine we see a rotating magnet evolving electricity. And the electricity so evolved may immediately after exhibit itself as heat, light, or chemical affinity. Faraday’s discovery of the effect of Magnetism on polarized light, as well as the discovery that change of magnetic state is accompanied by heat, point to further like connexions. Lastly, various experiments show that the magnetization of a body alters its internal structure; and that conversely, the alteration of its internal structure, as by mechanical strain, alters its magnetic condition.
Improbable as it seemed, it is now proved that from Light also may proceed the like variety of agencies. The solar rays change the atomic arrangements of particular crystals. Certain mixed gases, which do not otherwise combine, combine in the sunshine. In some compounds Light produces decomposition. Since the inquiries of photographers have drawn attention to the subject, it has been shown that “a vast number of substances, both elementary and compound, are notably affected by this agent, even those apparently the most unalterable in character, such as metals.” And when a daguerreotype plate is connected with a proper apparatus “we get chemical action on the plate, electricity circulating through the wires, magnetism in the coil, heat in the helix, and motion in the needles.”
The genesis of all other modes of force from Chemical Action, scarcely needs pointing out. The ordinary accompaniment of chemical combination is heat; and when the affinities are intense, light also is, under fit conditions, produced. Chemical changes involving alteration of bulk, cause motion, both in the combining elements and in adjacent masses of matter: witness the propulsion of a bullet by the explosion of gunpowder. In the galvanic battery we see electricity resulting from chemical composition and decomposition. While through the medium of this electricity, Chemical Action produces magnetism.
These facts, the larger part of which are culled from Mr. Grove’s work on “The Correlation of Physical Forces,” show us that each force is transformable, directly or indirectly, into the others. In every change Force undergoes metamorphosis; and from the new form or forms it assumes, may subsequently result either the previous one or any of the rest, in endless variety of order and combination. It is further becoming manifest that the physical forces stand not simply in qualitative correlations with each other, but also in quantitative correlations. Besides proving that one mode of force may be transformed into another mode, experiments illustrate the truth that from a definite amount of one, definite amounts of others always arise. Ordinarily it is indeed difficult to show this; since it mostly happens that the transformation of any force is not into some one of the rest but into several of them: the proportions being determined by the ever-varying conditions. But in certain cases, positive results have been reached. Mr. Joule has ascertained that the fall of 772 lbs. through one foot, will raise the temperature of a pound of water one degree of Fahrenheit. The investigations of Dulong, Petit and Neumann, have proved a relation in amount between the affinities of combining bodies and the heat evolved during their combination. Between chemical action and voltaic electricity, a quantitative connexion has also been established: Faraday’s experiments implying that a specific measure of electricity is disengaged by a given measure of chemical action. The well-determined relations between the quantities of heat generated and water turned into steam, or still better the known expansion produced in steam by each additional degree of heat, may be cited in further evidence. Whence it is no longer doubted that among the several forms which force assumes, the quantitative relations are fixed. The conclusion tacitly agreed on by physicists, is, not only that the physical forces undergo metamorphoses, but that a certain amount of each is the constant equivalent of certain amounts of the others.
§ 78. Throughout Evolution under all its phases, this truth of course invariably holds. Every successive change or group of changes forming part of it, is of necessity limited by the conditions thus implied. The forces which any step in Evolution exhibits, must be affiliable on the like or unlike forces previously existing; while from the forces so generated must thereafter be derived others more or less transformed. And besides recognizing the forces at any time existing, as necessarily linked with those preceding and succeeding them, we must also recognize the amounts of these forces successively manifested as determinate, – as necessarily producing such and such quantities of results, and as necessarily limited to those quantities.
Involved as are the phenomena of Evolution, it is not to be expected that a definite quantitative relation can in each case, or indeed in any case, be shown between the forces expended in successive phases. We have not adequate data for this; and probably shall never have them. The antecedents of the simpler forms of Evolution, belong to a remote past respecting which we can have nothing but inferential knowledge; while the antecedents of the only kind of Evolution which is traceable from beginning to end (namely, that of individual organisms) are too complex to be dealt with by exact methods. Hence we cannot hope to establish equivalence among the successive manifestations of force which each order of Evolution affords. The most we can hope is to establish a qualitative correlation that is indefinitely quantitative – quantitative in so far as involving something like a due proportion between causes and effects. If this can be done, however, some progress will be made towards the solution of our problem. Though it may be beyond our power to show a measurable relation between the force or group of forces which any phase of Evolution displays, and the force or group of forces immediately succeeding it; yet if we can show that there always are antecedent forces, and that the effects they produce always become the antecedents of further ones – if while unable to calculate how much of each change will be produced, we can prove that a change of that kind was necessitated – if we can discern even the vaguest correspondence between the amount of such change and the amount of the pre-existing force; we shall advance a step towards interpreting the transformation of the simple into the complex.
With the view of attempting this, let us now reconsider the different types of Evolution awhile since delineated: taking them in the same order as before.
§ 79. On contemplating our Solar System the first fact which strikes us, is, that all its members are in motion; and that their motion is of a two-fold, or rather of a three-fold, kind. Each planet and satellite has a movement of rotation and a movement of translation; besides the movement through space which all have in common with their rotating primary. Whence this unceasing change of place?
The hypothesis of Evolution supplies us with an answer. Impossible as it is to assign a reason for the pre-existence of matter in the diffused form supposed; yet assuming its pre-existence in that form, we have in the gravitation of its parts a cause of motion adequate to the results. So far too as the evidence carries us, we can perceive some quantitative relation between the motions produced, and the gravitative forces expended in producing them. The planets formed from that matter which has travelled the shortest distance towards the common centre of gravity, have the smallest velocities: the uniform law being that in advancing from the outermost to the innermost planets, the rate of orbital motion progressively increases. It may indeed be remarked that this is explicable on the teleological hypothesis; since it is a condition to equilibrium. But without dwelling on the fact that this is beside the question, it will suffice to point out that the like cannot be said of the planetary rotations. No such final cause can be assigned for the rapid axial movement of Jupiter and Saturn, or the slow axial movement of Mercury. But if in pursuance of the doctrine of correlation we look for the antecedents of these gyrations which all planets exhibit, the theory of Evolution furnishes us with equivalent ones; and ones which bear manifest quantitative relations to the motions displayed. For the planets that turn on their axes with extreme rapidity, are those having great masses and large orbits – those, that is, of which the once diffused elements moved to their centres of gravity through immense spaces, and so acquired high velocities. While, conversely, there has resulted the smallest axial movement where the orbit and the mass are both the smallest.