Kitabı oku: «The Principles of Biology, Volume 1 (of 2)», sayfa 33
CHAPTER IX.
EXTERNAL FACTORS
§ 148. When illustrating the rhythm of motion (First Principles, § 83) it was pointed out that besides the daily and annual alternations in the quantities of light and heat which any portion of the Earth's surface receives from the Sun, there are alternations which require immensely-greater periods to complete. Reference was made to the fact that "every planet, during a certain long period, presents more of its northern than of its southern hemisphere to the Sun at the time of its nearest approach to him; and then again, during a like period, presents more of its southern hemisphere than of its northern – a recurring coincidence which, though it causes in some planets no sensible alterations of climate, involves, in the case of the Earth, an epoch of 21,000 years during which each hemisphere goes through a cycle of temperate seasons, and seasons that are extreme in their heat and cold." Further, we saw that there is a variation of this variation. The slow rhythm of temperate and intemperate climates, which takes 21,000 years to complete itself, undergoes exaggeration and mitigation during epochs that are far longer. The Earth's orbit slowly alters in form: now approximating to a circle, and now becoming more eccentric. During the period in which the Earth's orbit has least eccentricity, the temperate and intemperate climates which repeat their cycle in 21,000 years, are severally less temperate and less intemperate, than when, some one or two millions of years later, the Earth's orbit has reached its extreme of eccentricity.
Thus, besides those daily variations in the quantities of light and heat received by organisms, and responded to by variations in their functions; and besides the annual variations in the quantities of light and heat which organisms receive, and similarly respond to by variations in their functions; there are variations that severally complete themselves in 21,000 years and in some millions of years – variations to which there must also be responses in the changed functions of organisms. The whole vegetal and animal kingdoms, are subject to quadruply-compounded rhythms in the incidence of the forces on which life primarily depends – rhythms so involved in their slow working round that at no time during one of these vast epochs, can the incidence of these various forces be exactly the same as at any other time. To the direct effects so produced on organisms, have to be added much more important indirect effects. Changes of distribution must result. Certain redistributions are occasioned even by the annual variations in the quantities of the solar rays received by each part of the Earth's surface. The migrations of birds thus caused are familiar. So, too, are the migrations of certain fishes: in some cases from one part of the sea to another; in some cases from salt water to fresh water; and in some cases from fresh water to salt water. Now just as the yearly changes in the amounts of light and heat falling on each locality, yearly extend and restrict the habitats of many organisms which are able to move about with some rapidity; so must the alterations of temperate and intemperate climates produce extensions and restrictions of habitats. These, though slow, must be universal – must affect the habitats of stationary organisms as well as those of locomotive ones. For if, during an astronomic era, there is going on at any limit to a plant's habitat, a diminution of the winter's cold or summer's heat, which had before stopped its spread at that limit; then, though the individual plants are fixed, yet the species will move: the seeds of plants living at the limit, will produce individuals which survive beyond the limit. The gradual spread so effected, having gone on for some ten thousand years, the opposite change of climate will begin to cause retreat. The tide of each species will, during one half of a long epoch, slowly flow into new regions, and then will slowly ebb away from them. Further, this rise and fall in the tide of each species will, during far longer intervals, undergo increasing rises and falls and then decreasing rises and falls. There will be an alteration of spring tides and neap tides, answering to the changing eccentricity of the Earth's orbit.
These astronomical rhythms, therefore, entail on organisms unceasing changes in the incidence of forces in two ways. They directly subject them to variations of solar influences, in such a manner that each generation is somewhat differently affected in its functions; and they indirectly bring about complicated alterations in the environing agencies, by carrying each species into the presence of new physical conditions, new soil and surface.
§ 149. The power of geological actions to modify everywhere the circumstances in which plants and animals are placed, is conspicuous. In each locality denudation slowly uncovers different deposits, and slowly changes the exposed areas of deposits already uncovered. Simultaneously, the alluvial beds in course of formation, are qualitatively affected by these progressive changes in the natures and proportions of the strata denuded. The inclinations of surfaces and their directions with respect to the Sun, are at the same time modified; and the organisms existing on them are thus having their thermal conditions continually altered, as well as their drainage. Igneous action, too, complicates these gradual modifications. A flat region cannot be step by step thrust up into a protuberance without unlike climatic changes being produced in its several parts, by their exposures to different aspects. Extrusions of trap, wherever they take place, revolutionize the localities; both over the areas covered and over the areas on to which their detritus is carried. And where volcanoes are formed, the ashes they occasionally send out modify the character of the soil throughout large surrounding tracts.
In like manner alterations in the Earth's crust cause the ocean to be ever subjecting the organisms it contains to new combinations of conditions. Here the water is being deepened by subsidence, and there shallowed by upheaval. While the falling upon it of sediment brought down by neighbouring large rivers, is raising the sea-bottom in one place, in another the habitual rush of the tide is carrying away the sediment deposited in past times. The mineral character of the submerged surface on which sea-weeds grow and molluscs crawl, is everywhere occasionally changed; now by the bringing away from an adjacent shore some previously untouched strata; and now by the accumulation of organic remains, such as the shells of pteropods or of foraminifera. A further series of alterations in the circumstances of marine organisms, is entailed by changes in the movements of the water. Each modification in the outlines of neighbouring shores makes the tidal streams vary their directions or velocities or both. And the local temperature is from time to time raised or lowered, because some far-distant change of form in the Earth's crust has wrought a divergence in those circulating currents of warm and cold water which pervade the ocean.
These geologically-caused changes in the physical characters of each environment, occur in ever-new combinations, and with ever-increasing complexity. As already shown (First Principles, § 158), it follows from the law of the multiplication of effects, that during long periods each tract of the Earth's surface increases in heterogeneity of both form and substance. So that plants and animals of all kinds are, in the course of generations, subjected by alterations in the crust of the Earth, to sets of incident forces differing from previous sets, both by changes in the proportions of the factors and, occasionally, by the addition of new factors.
§ 150. Variations in the astronomical conditions joined with variations in the geological conditions, bring about variations in the meteorological conditions. Those slow alternations of elevation and subsidence which take place over immense areas, here producing a continent where once there was a fathomless ocean, and there causing wide seas to spread where in a long past epoch there stood snow-capped mountains, gradually work great atmospheric changes. While the highest parts of an emerging surface of the Earth's crust exist as a cluster of islands, the plants and animals which in course of time migrate to them have climates that are peculiar to small tracts of land surrounded by large tracts of water. As, by successive upheavals, greater areas are exposed, there begin to arise sensible contrasts between the states of their peripheral parts and their central parts. The breezes which daily moderate the extremes of temperature near the shores, cease to affect the interiors; and the interiors, less qualified too in their heat and cold by such ocean-currents as approach the coast, acquire more decidedly the characters due to their latitudes. Along with the further elevations which unite the members of the archipelago into a continent, there come new meteorologic changes, as well as exacerbations of the old. The winds, which were comparatively uniform in their directions and periods when only islands existed, grow involved in their distribution, and widely-different in different parts of the continent. The quantities of rain which they discharge and of moisture which they absorb, vary everywhere according to the proximity to the sea and to surfaces of land having special characters.
Other complications result from variations of height above the sea: elevation producing a decrease of heat and consequently an increase in the precipitation of water – a precipitation which takes the shape of snow where the elevation is very great, and of rain where it is not so great. The gatherings of clouds and descents of showers around mountain tops, are familiar to every tourist. Inquiries in the neighbouring valleys prove that within distances of a mile or two the recurring storms differ in their frequency and violence. Nay, even a few yards off, the meteorological conditions vary in such regions: as witness the way in which the condensing vapour keeps eddying round on one side of some high crag, while the other side is clear; or the way in which the snowline runs irregularly to different heights, in all the hollows and ravines of each mountain side.
As climatic variations thus geologically produced, are compounded with those which result from slow astronomical changes; and as no correspondence exists between the geologic and the astronomic rhythms; it results that the same plexus of actions never recurs. Hence the incident forces to which the organisms of every locality are exposed by atmospheric agencies, are ever passing into unparalleled combinations; and these are on the average ever becoming more complex.
§ 151. Besides changes in the incidence of inorganic forces, there are equally continuous, and still more involved, changes in the incidence of forces which organisms exercise on one another. As before pointed out (§ 105), the plants and animals inhabiting each locality are held together in so entangled a web of relations, that any considerable modification which one species undergoes, acts indirectly on many other species, and eventually changes, in some degree, the circumstances of nearly all the rest. If an increase of heat, or modification of soil, or decrease of humidity, causes a particular kind of plant either to thrive or to dwindle, an unfavourable or favourable effect is wrought on all such competing kinds of plants as are not immediately influenced in the same way. The animals which eat the seeds or browse on the leaves, either of the plant primarily affected or those of its competitors, are severally altered in their states of nutrition and in their numbers; and this change presently tells on various predatory animals and parasites. And since each of these secondary and tertiary changes becomes itself a centre of others, the increase or decrease of each species produces waves of influence which spread and reverberate and re-reverberate throughout the whole Flora and Fauna of the locality.
More marked and multiplied still, are the ultimate effects of those causes which make possible the colonization of neighbouring areas. Each intruding plant or animal, besides the new inorganic conditions to which it is subject, is subject to organic conditions different from those to which it has been accustomed. It has to compete with some organisms unlike those of its preceding habitat. It must preserve itself from enemies not before encountered. Or it may meet with a species over which it has some advantage greater than any it had over the species it was previously in contact with. Even where migration does not bring it face to face with new competitors or new enemies or new prey, it inevitably experiences new proportions among these. Further, an expanding species is almost certain to invade more than one adjacent region. Spreading both north and south, or east and west, it will come among the plants and animals, here of a level district and there of a hilly one – here of an inland tract and there of a tract bordered by the sea. And while different groups of its members will thus expose themselves to the actions and reactions of different Floras and Faunas, these different Floras and Faunas will simultaneously have their organic conditions changed by the intruders.
This process becomes gradually more active and more complicated. Though, in particular cases, a plant or animal may fall into simpler relations with the living things around than those it was before placed in, yet it is manifest that, on the average, the organic environments of organisms have been advancing in heterogeneity. As the number of species with which each species is directly or indirectly implicated, multiplies, each species is oftener subject to changes in the organic actions which influence it. These more frequent changes severally grow more involved. And the corresponding reactions affect larger Floras and Faunas, in ways increasingly complex and varied.
§ 152. When the astronomic, geologic, meteorologic, and organic agencies which are at work on each species of plant and animal are contemplated as becoming severally more complicated in themselves, and as co-operating in ways that are always partially new; it will be seen that throughout all time there has been an exposure of organisms to endless successions of modifying causes which gradually acquire an intricacy scarcely conceivable. Every kind of plant and animal may be regarded as for ever passing into a new environment – as perpetually having its relations to external circumstances altered, either by their changes with respect to it when it remains stationary, or by its changes with respect to them when it migrates, or by both.
Yet a further cause of progressive alteration and complication in the incident forces, exists. All other things continuing the same, every additional faculty by which an organism is brought into relation with external objects, as well as every improvement in such faculty, becomes a means of subjecting the organism to a greater number and variety of external stimuli, and to new combinations of external stimuli. So that each advance in complexity of organization, itself becomes an added source of complexity in the incidence of external forces.
Once more, every increase in the locomotive powers of animals, increases both the multiplicity and the multiformity of the actions of things upon them, and of their reactions upon things. Doubling a creature's activity quadruples the area that comes within the range of its excursions; thus augmenting in number and heterogeneity, the external agencies which act on it during any given interval.
By compounding the actions of these several orders of factors, there is produced a geometric progression of changes, increasing with immense rapidity. And there goes on an equally rapid increase in the frequency with which the combinations of the actions are altered, and the intricacies of their co-operations enhanced.
CHAPTER X.
INTERNAL FACTORS
§ 153. We saw at the outset (§§ 10-16), that organic matter is built up of molecules so unstable, that the slightest variation in their conditions destroys their equilibrium, and causes them either to assume altered structures or to decompose. But a substance which is beyond all others changeable by the actions and reactions of the forces liberated from instant to instant within its own mass, must be a substance which is beyond all others changeable by the forces acting on it from without. If their composition fits organic aggregates for undergoing with special facility and rapidity those re-distributions of matter and motion whence result individual organization and life; then their composition must make them similarly apt to undergo those permanent re-distributions of matter and motion which are expressed by changes of structure, in correspondence with permanent re-distributions of matter and motion in their environments.
In First Principles, when considering the phenomena of Evolution at large, the leading characters and causes of those changes which constitute organic evolution were briefly traced. Under each of the derivative laws of force to which the passage from an incoherent, indefinite homogeneity to a coherent, definite heterogeneity, conforms, were given illustrations drawn from the metamorphoses of living bodies. Here it will be needful to contemplate the several resulting processes as going on at once, in both individuals and species.
§ 154. Our postulate being that organic evolution in general commenced with homogeneous organic matter, we have first to remember that the state of homogeneity is an unstable state (First Principles, § 149). In any aggregate "the relations of outside and inside, and of comparative nearness to neighbouring sources of influence, imply the reception of influences that are unlike in quantity, or quality, or both; and it follows that unlike changes will be produced in the parts thus dissimilarly acted upon." Further, "if any given whole, instead of being absolutely uniform throughout, consists of parts distinguishable from one another – if each of these parts, while somewhat unlike other parts, is uniform within itself; then, each of them being in unstable equilibrium, it follows that while the changes set up within it must render it multiform, they must at the same time render the whole more multiform than before;" and hence, "whether that state with which we commence be or be not one of perfect homogeneity, the process must equally be towards a relative heterogeneity." This loss of homogeneity which the special instability of organic aggregates fits them to display more promptly and variously than any other aggregates, must be shown in more numerous ways in proportion as the incident forces are more numerous. Every differentiation of structure being a result of some difference in the relations of the parts to the agencies acting on them, it follows that the more multiplied and more unlike the agencies, the more varied must be the differentiations wrought. Hence the change from a state of homogeneity to a state of heterogeneity, will be marked in proportion as the environing actions to which the organism is supposes it is only are complex. This transition from a uniform to a multiform state, must continue through successive individuals. Given a series of organisms, each of which is developed from a portion of a preceding organism, and the question is whether, after exposure of the series for a million years to changed incident forces, one of its members will be the same as though the incident forces had only just changed. To say that it will, is implicitly to deny the persistence of force. In relation to any cause of divergence, the whole series of such organisms may be considered as fused together into a continuously-existing organism; and when so considered, it becomes manifest that a continuously-acting cause will go on working a continuously-increasing effect, until some counteracting cause prevents any further effect.
But now if any primordial organic aggregate must, in itself and through its descendants, gravitate from uniformity to multiformity, in obedience to the more or less multiform forces acting on it; what must happen if these multiform forces are themselves undergoing slow variations and complications? Clearly the process, ever-advancing towards a temporary limit but ever having its limit removed, must go on unceasingly. On those structural changes wrought in the once homogeneous aggregate by an original set of incident forces, will be superposed further changes wrought by a modified set of incident forces; and so on throughout all time. Omitting for the present those circumstances which check and qualify its consequences, the instability of the homogeneous must be recognized as an ever-acting cause of organic evolution, as of all other evolution.
While it follows that every organism, considered as an individual and as one of a series, tends thus to pass into a more heterogeneous state; it also follows that every species, considered as an aggregate of individuals, tends to do the like. Throughout the area it inhabits, the conditions can never be absolutely uniform: its members must, in different parts of the area, be exposed to different sets of incident forces. Still more decided must this difference of exposure be when its members spread into other habitats. Those expansive and repressive energies which set to each species a limit that perpetually oscillates from side to side of a certain mean, are, as we lately saw, frequently changed by new combinations of the external factors – astronomic, geologic, meteorologic, and organic. Hence there from time to time arise lines of diminished resistance, along which the species flows into new localities. Such portions of the species as thus migrate, are subject to circumstances unlike its previous average circumstances. And from multiformity of the circumstances, must come multiformity of the species.
Thus the law of the instability of the homogeneous has here a three-fold corollary. As interpreted in connexion with the ever-progressing, ever-complicating changes in external factors, it involves the conclusion that there is a prevailing tendency towards greater heterogeneity in all kinds of organisms, considered both individually and in successive generations; as well as in each assemblage of organisms constituting a species; and, by consequence, in each genus, order, and class.
§ 155. When considering the causes of evolution in general, we further saw (First Principles, § 156), that the multiplication of effects aids continually to increase that heterogeneity into which homogeneity inevitably lapses. It was pointed out that since "the several parts of an aggregate are differently modified by any incident force;" and since "by the reactions of the differently modified parts the incident force itself must be divided into differently modified parts;" it follows that "each differentiated division of the aggregate thus becomes a centre from which a differentiated division of the original force is again diffused. And since unlike forces must produce unlike results, each of these differentiated forces must produce, throughout the aggregate, a further series of differentiations." To this it was added that, in proportion as the heterogeneity increases, the complications arising from this multiplication of effects grow more marked; because the more strongly contrasted the parts of an aggregate become, the more different must be their reactions on incident forces, and the more unlike must be the secondary effects which these initiate; and because every increase in the number of unlike parts adds to the number of such differentiated incident forces, and such secondary effects.
How this multiplication of effects conspires, with the instability of the homogeneous, to work an increasing multiformity of structure in an organism, was shown at the time; and the foregoing pages contain further incidental illustrations. In § 69 it was pointed out that a change in one function must produce ever-complicating perturbations in other functions; and that, eventually, all parts of the organism must be modified in their states. Suppose that the head of a bison becomes much heavier, what must be the indirect results? The muscles of the neck are put to greater exertions; and its vertebræ have to bear additional tensions and pressures, caused both by the increased weight of the head, and by the stronger contractions of the muscles that support and move it. These muscles also affect their special attachments: several of the dorsal spines suffer augmented strains; and the vertebræ to which they are fixed are more severely taxed. Further, this heavier head and the more massive neck it necessitates, require a stronger fulcrum: the whole thoracic arch, and the fore-limbs which support it, are subject to greater continuous stress and more violent occasional shocks. And the required strengthening of the fore-quarters cannot take place without the centre of gravity being changed, and the hind limbs being differently reacted upon during locomotion. Any one who compares the outline of the bison with that of its congener, the ox, will see how profoundly a heavier head affects the entire osseous and muscular systems. Besides this multiplication of mechanical effects, there is a multiplication of physiological effects. The vascular apparatus is modified throughout its whole structure by each considerable modification in the proportions of the body. Increase in the size of any organ implies a quantitative, and often a qualitative, reaction on the blood; and thus alters the nutrition of all other organs. Such physiological correlations are exemplified in the many differences which accompany difference of sex. That the minor sexual peculiarities are brought about by the physiological actions and reactions, is shown both by the fact that they are commonly but faintly marked until the fundamentally distinctive organs are developed, and that when the development of these is prevented, the minor sexual peculiarities do not arise. No further proof is, I think, needed, that in any individual organism or its descendants, a new external action must, besides the primary internal change which it works, work many secondary changes, as well as tertiary changes still more multiplied. That tendency towards greater heterogeneity which is given to an organism by disturbing its environment, is helped by the tendency which every modification has to produce other modifications – modifications which must become more numerous in proportion as the organism becomes more complex. Lastly, among the indirect and involved manifestations of this tendency, we must not omit the innumerable small irregularities of structure which result from the crossing of dissimilarly-modified individuals. It was shown (§§ 89, 90) that what are called "spontaneous variations," are interpretable as results of miscellaneously compounding the changes wrought in different lines of ancestors by different conditions of life. These still more complex and multitudinous effects so produced, are further illustrations of the multiplication of effects.
Equally in the aggregate of individuals constituting a species, does multiplication of effects become the continual cause of increasing multiformity. The lapse of a species into divergent varieties, initiates fresh combinations of forces tending to work further divergences. The new varieties compete with the parent species in new ways; and so add new elements to its circumstances. They modify somewhat the conditions of other species existing in their habitat, or in the habitat they have invaded; and the modifications wrought in such other species become additional sources of influence. The Flora and Fauna of every region are united by their entangled relations into a whole, of which no part can be affected without affecting the rest. Hence, each differentiation in a local assemblage of species, becomes the cause of further differentiations.
§ 156. One of the universal principles to which we saw that the re-distribution of matter and motion conforms, is that in any aggregate made up of mixed units, incident forces produce segregation – separate unlike units and bring together like units; and it was shown that the increasing integration and definiteness which characterizes each part of an evolving organic aggregate, as of every other aggregate, results from this (First Principles, § 166). It remains here to say that while the actions and reactions between organisms and their changing environments, add to the heterogeneity of organic structures, they also give to the heterogeneity this growing distinctness. At first sight the reverse might be inferred. It might be argued that any new set of effects wrought in an organism by some new set of external forces, must tend more or less to obliterate the effects previously wrought – must produce confusion or indefiniteness. A little consideration, however, will dissipate this impression.
Doubtless the condition under which alone increasing definiteness of structure can be acquired by any part of an organism, either in an individual or in successive generations, is that such part shall be exposed to some set of tolerably-constant forces; and doubtless, continual change of circumstances interferes with this. But the interference can never be considerable. For the pre-existing structure of an organism prevents it from living under any new conditions except such as are congruous with the fundamental characters of its organization – such as subject its essential organs to actions substantially the same as before. Great changes must kill it. Hence, it can continuously expose itself and its descendants, only to those moderate changes which do not destroy the general harmony between the aggregate of incident forces and the aggregate of its functions. That is, it must remain under influences calculated to make greater the definiteness of the chief differentiations already produced. If, for example, we set out with an animal in which a rudimentary vertebral column with its attached muscular system has been established; it is clear that the mechanical arrangements have become thereby so far determined, that subsequent modifications are extremely likely, if not certain, to be consistent with the production of movement by the actions of muscles on a flexible central axis. Hence, there will continue a general similarity in the play of forces to which the flexible central axis is subject; and so, notwithstanding the metamorphoses which the vertebrate type undergoes, there will be a maintenance of conditions favourable to increasing definiteness and integration of the vertebral column. Moreover, this maintenance of such conditions becomes secure in proportion as organization advances. Each further complexity of structure, implying some further complexity in the relations between an organism and its environment, must tend to specialize the actions and reactions between it and its environment – must tend to increase the stringency with which it is restrained within such environments as admit of those special actions and reactions for which its structure fits it; that is, must further guarantee the continuance of those actions and reactions to which its essential organs respond, and therefore the continuance of the segregating process.