Kitabı oku: «Essays Upon Heredity and Kindred Biological Problems», sayfa 26
Of course, this hereditary power is always relative, as may be easily proved by cross-breeding between different species and races. Thus when a fantail pigeon is crossed with a laugher, the characters of the former preponderate, but when crossed with a pouter the characters of the latter preponderate233. The facts afforded by cross-breeding between hybrids and one of the pure parent species, together with a consideration of the resulting degree of variability, seem to me to be even more unfavourable to Brooks’ view. They appear to me to admit of an interpretation different from that brought forward by him; and when he proceeds to make use of secondary sexual characters for the purpose of his theory, I believe that his interpretation of the facts can be easily controverted. It is hardly possible to conclude that variability is due to the male parent, because the males in many species of animals are more variable, or deviate further from the original type, than the females. It is certainly true that in many species the male sex has taken the lead in processes of transformation, while the female sex has followed, but there is no difficulty in finding a better explanation of the fact than that afforded by the assumption ‘that something within the animal compels the male to lead and the female to follow in the evolution of new breeds.’ Brooks has with great ingenuity brought forward certain instances which cannot be explained with perfect confidence by Darwin’s theory of sexual selection, but this hardly justifies us in considering the theory to be generally insufficient, and in having recourse to a theory of heredity which is as complicated as it is improbable. The whole idea of the passage of gemmules from the modified parts of the body into the germ-cells is based upon the unproved assumption that acquired characters can be transmitted. The idea that the male germ-cell plays a different part from that of the female, in the construction of the embryo, seems to me to be untenable, especially because it conflicts with the simple observation that upon the whole human children inherit quite as much from the father as from the mother.
VI.
ON THE NUMBER OF POLAR BODIES AND
THEIR SIGNIFICANCE IN HEREDITY.
1887
ON THE NUMBER OF POLAR BODIES AND THEIR SIGNIFICANCE IN HEREDITY.
PREFACE
The following paper stands in close relation to a series of short essays which I have published from time to time since the year 1881. The first of these treated of ‘The Duration of Life,’ and the last of ‘The Significance of Sexual Reproduction.’ The present essay is most intimately connected with that upon ‘The Continuity of the Germ-plasm,’ and has, in fact, grown out of the explanation of the meaning of polar bodies in the animal egg, brought forward in that essay. The explanation rested upon a trustworthy and solid foundation, as I am now able to maintain with even greater confidence than at that time. It rested upon the idea that in the egg-cell, a cell with a high degree of histological differentiation, two different kinds of nuclear substance exert their influence, one after the other. But continued investigation has shown me that the explanation built upon this idea is only correct in part, and that it does not exhaust the full meaning of the formation of polar bodies. In the present essay I hope to complete the explanation by the addition of essential elements, and I trust that, at the same time, I shall succeed in throwing new light upon the mysterious problems of sexual reproduction and parthenogenesis.
It is obvious that this essay can only contain an attempt at an explanation, an hypothesis, and not a solution which is above criticism, like the results of mathematical calculation. But no biological theory of the present day can escape a similar fate, for the mathematical key which opens the door leading to the secrets of life has not yet been found, and a considerable period of time must elapse before its discovery. But although I can only offer an hypothesis, I hope to be able to show that it has not been rashly adopted, but that it has grown in a natural manner from the secure foundation of ascertained facts.
Nothing impresses the stamp of truth upon an hypothesis more than the fact that its light renders intelligible not only those facts for the explanation of which it has been framed, but also other and more distantly related groups of phenomena. This seems to me to be the case with my hypothesis, since the interpretation of polar bodies and the ideas derived from it unite from very different points of view, the facts of reproduction, heredity and even the transformation of species, into a comprehensive system, which although by no means complete, is nevertheless harmonious, and therefore satisfactory.
Only the most essential elements of the new facts which form the foundation of the views developed in this essay will be briefly mentioned. My object is to show all the theoretical bearings of these new facts, not to describe them in technical detail. Such a description accompanied by the necessary figures will shortly be given in another place234.
A. W.
Freiburg I. Br., May 30, 1887.
VI.
ON THE NUMBER OF POLAR BODIES AND THEIR
SIGNIFICANCE IN HEREDITY
I. Parthenogenetic and Sexual Egg
Hitherto no value has been attached to the question whether an animal egg produces one or two polar bodies. Several observers have found two such bodies in many different groups of animals, both high and low in the scale of organization. In certain species only one has been observed, in others again three, four, or five (e. g. Bischoff, in the rabbit). Many observers did not even record the number of polar bodies found by them, and simply spoke of ‘polar bodies.’ As long as their formation was looked upon as a process of secondary physiological importance—as an ‘excretion,’ or a ‘process of purification,’ or even as the ‘excreta’ (!) of the egg, as a ‘rejuvenescence of the nucleus,’ or of mere historical interest as a reminiscence of ancestral processes, without any present physiological meaning—so long was it unnecessary to attach any importance to the number of these bodies, or to pay special attention to them. Of all the above-mentioned views, the one which explained polar bodies as a mere reminiscence of ancestral processes seemed to be especially well founded. Ten years ago we were far from being able to prove that polar bodies occurred in all animal eggs, and even in 1880, Balfour said in his excellent ‘Comparative Embryology,’ ‘It is very possible, not to say probable, that such changes [the formation of polar bodies] are universal in the animal kingdom, but the present state of our knowledge does not justify us in saying so235.’
Even at the present day we are not, strictly speaking, justified in making this assertion, for polar bodies have not yet been proved to occur in certain groups of animals, such as reptiles and birds; but they have been detected in the great majority of the large groups of the animal kingdom, and wherever they have been looked for with the aid of our modern highly efficient appliances, they have been found236.
A deeper insight into the process of fertilization has above all led to a closer study of antecedent phenomena.
O. Hertwig237 and Fol238 showed that the formation of polar bodies was connected with a division of the nuclear substance of the egg. Hertwig and Bütschli239 then proved that the body expelled from the egg possessed the nature of a cell, and thus led the way to the view that the formation of polar bodies is a process of cell-division, although a very unequal one. Even then there was no reason for attaching any special importance to the number of these bodies; nor should we have such a reason if we agreed with Minot240, Balfour241, and van Beneden in ascribing a high physiological significance to this process, and assumed that the expelled polar body is the male part of the previously hermaphrodite egg-cell. We should not know in what proportion the quantities of the ‘male’ and ‘female’ parts were present, and it would therefore be impossible to decide, a priori, whether the ‘male’ part had to be removed from the body of the egg-cell in one, two, or more portions.
Even after the view that the nuclear substance is the essential element in fertilization had gained ground—a view chiefly due to Strasburger’s investigations on the process of fertilization in Phanerogams—and after Hertwig’s opinion had been confirmed, that the process of fertilization is essentially the conjugation of nuclei, even then there appeared to be no reason why the number of divisions undergone by the nucleus of the mature egg should be looked upon as an essential feature.
This was the state of the subject at the time when I first made an attempt to ascertain the meaning of the formation of polar bodies. I based my views upon the idea, which was just then gaining ground, that Nägeli’s idioplasm was to be sought for in the nucleus, and that the nucleoplasm must therefore contain the substance which determines the form and functions of the cell. Hence it followed that the germ-plasm—the substance which determines the course of embryonic development—must be identified with the nucleoplasm of the egg-cell. The conception of germ-plasm was brought forward by me before the appearance of Nägeli’s work242 which is so rich in fertile ideas; and germ-plasm does not exactly coincide with Nägeli’s idioplasm243. Germ-plasm is only a certain kind of idioplasm—viz. that contained in the germ-cell—and it is the most important of all idioplasms, because all the other kinds are merely the results of the various ontogenetic stages into which it developes. I attempted to show that the molecular structure in these ontogenetic stages into which the germ-plasm developes would become more and more unlike that of the original structure of this substance, until it finally attains a highly specialized character at the end of embryonic development, corresponding to the production of specialized histological elements. It did not seem to me to be conceivable that the specialized idioplasm contained in the nuclei of the tissue cells could re-transform itself into the initial stage of the whole developmental series—that it could give up its specialized character and re-assume the generalized character of germ-substance. I will not repeat the reasons which induced me to adopt this opinion; they still seem to me to be conclusive. But let the above-mentioned theory be once accepted, and there follows from it another interesting conclusion concerning the germ-cell, or at least concerning those germ-cells which, like most animal eggs, possess a specific histological character. For obviously, such a character presupposes the existence of an idioplasm with a considerable degree of histological specialization, which must be contained in the nucleus of the egg-cell. We know, on the other hand, that when its growth is complete, after the formation of yolk and membranes, the egg contains germ-plasm, for it is capable of developing into an embryo. We have therefore, as it were, two natures in a single cell, which become manifest one after the other, and which, according to our fundamental conception, can only be explained by the presence of two different idioplasms, which control the egg-cell one after the other, and determine its processes of development. At first a nucleoplasm leading to histological specialization directs the development of the egg and stamps upon it a specific histological character; and then germ-plasm takes its place, and compels the egg to undergo development into an embryo. If then the histogenetic or ovogenetic nucleoplasm of the egg-cell can be derived from the germ-plasm, but cannot be re-transformed into it (for the specialized can be derived from the generalized, but not the generalized from the specialized), we are driven to the conclusion that the germ-plasm, which is already present in the youngest egg-cell, first of all originates a specific histogenetic or ovogenetic nucleoplasm which controls the egg-cell up to the point at which it becomes mature; that its place is then taken by the rest of the unchanged nucleoplasm (germ-plasm), which has in the meantime increased by growth; and that the former is removed from the egg in the form of polar bodies—a removal which has been rendered possible by the occurrence of nuclear division. Hence the formation of polar bodies signified, in my opinion, the removal of the ovogenetic part of the nucleus from the mature egg-cell. Such removal was absolutely necessary, if it is impossible that the ovogenetic nucleoplasm can be re-transformed into germ-plasm. Hence the former substance cannot be made use of after the maturation of the egg, and it must even be opposed to the commencement of embryonic development, for it is impossible that the egg can be controlled by two forces of different kinds in the same manner as it would have been by one of them alone. I therefore concluded that the influence of the ovogenetic idioplasm must be removed before embryonic development can take place. In this way it seemed to me that not only the ordinary cases of ovogenetic and embryonic development became more easily intelligible, but also the rarer cases in which one and the same species produces two kinds of eggs—‘summer and winter eggs.’ Such eggs not only differ in size but also in the structure of yolk and membranes, although identical animals are developed from each of them. This result presupposes that the nucleus in both eggs contains identical germ-plasm, while the formation of different yolks and membranes requires the supposition that their nucleoplasm is different, inasmuch as the two eggs differ greatly in histological character.
The fact that equal quantities are separated during nuclear division, led me to conclude further that the expulsion of ovogenetic nucleoplasm can only take place when the germ-plasm in the nucleus of the egg-cell has increased by growth up to a point at which it can successfully oppose the ovogenetic nuclear substance. But we do not know the proportion which must obtain between the relative quantities of two different nuclear substances in order that nuclear division may be induced; and thus, by this hypothesis at least, we could not conclude with certainty as to the necessity for a single or a double division of the egg. It did not seem to be altogether inconceivable that the ovogenetic nucleoplasm might be larger in amount than the germ-plasm, and that it could only be completely removed by means of two successive nuclear divisions. I admit that this supposition caused me some uneasiness; but since nothing was known which could have enabled us to penetrate more deeply into the problem, I was satisfied, for the time being, in having found any explanation of the physiological value of polar bodies; leaving the future to decide not only whether such explanation were valid, but also whether it were exhaustive. The explanation seems to have found but little favour with some of our highest authorities. Hensen244 does not consider that my reasons for the distinction between germ-plasm and histogenetic nucleoplasm are conclusive, and it may be conceded that this objection was perhaps, at that time, well founded. O. Hertwig does not mention my hypothesis at all in his work on embryology245, although he states in the preface: ‘Among current problems I have chiefly taken into consideration the views which seem to me to be most completely justified, but I have not left unmentioned the views which I cannot accept.’ Minot’s hypothesis is discussed by Hertwig, but Bütschli’s246 is preferred by him, although these two hypotheses are not strictly opposed to each other; for the former is a purely physiological, the latter a purely morphological explanation. I desire to lay especial stress upon the fact that my hypothesis is simply a logical consequence from the conclusion that the nuclear substance determines the nature of a cell. How this takes place is quite another question, which need not be discussed here. If it is only certain that the nature of a cell is thus determined, it follows that a cell with a certain degree of histological specialization must contain a nucleoplasm corresponding to the specialization. But the mature egg also contains germ-plasm, and there are only two possibilities by which these facts can be explained: either the ovogenetic nucleoplasm is capable of re-transformation into germ-plasm, or it is incapable of such re-transformation. Now, quite apart from the arguments which might be advanced in favour of one of these two possibilities, the fact that a body is undoubtedly expelled from the mature egg seems to me of importance, while it is of even greater importance that this body contains nucleoplasm from the germ-cell.
It may be thought that the process, as supposed by me, is without analogy, but such a conclusion is wrong, for during every embryonic development there are numerous cell-divisions in which unequal nucleoplasms are separated from one another, and in all these cases we cannot imagine any way in which the process can take place, except by supposing that the two kinds of nucleoplasm were previously united in the mother-cell, although their differentiation probably took place only a short time before cell-division. Perhaps the new facts which will be mentioned presently, and the views derived from them, will make my hypothesis upon the histogenetic nucleoplasm of the germ-cells appear in a more favourable light to the authorities above-named.
My hypothesis has at all events the one merit that it has led me to fruitful investigations.
If the formation of polar bodies really means the removal of ovogenetic nucleoplasm from the mature egg, they must also be found in parthenogenetic eggs; inasmuch as the latter possess a specific histological structure equal to that found in eggs requiring fertilization. If, therefore, it were possible to observe the formation of polar bodies in eggs which develope parthenogenetically, such an observation would not form a proof of the validity of my interpretation; but it would be a fact which harmonized with it, and negatived a suggestion which, if confirmed, would have been fatal to the hypothesis. Minot, Balfour, and van Beneden, from the point of view afforded by their theories, were compelled to suppose that polar bodies are wanting in parthenogenetic eggs; and the facts which were known at that time favoured such an opinion, for in spite of many attempts, no one had ever succeeded in proving the formation of these bodies by parthenogenetic eggs.
During the summer of 1885 I first succeeded in ascertaining that a single polar body is expelled from the parthenogenetic summer-egg of one of the Daphnidae,—Polyphemus oculus247. Thus my interpretation of the process in question received support, while it seemed to me that Minot’s interpretation of polar bodies had been refuted; for if these bodies are formed in the parthenogenetic eggs of a single species, just as in eggs which require fertilization, it follows that the expulsion of polar bodies cannot signify the removal of the male element from the egg.
The desire to throw light upon the significance of polar bodies has been the only cause of my investigation. At the same time I hoped by this means to gain further knowledge as to the nature of parthenogenesis.
In the third part of the essay on ‘The Continuity of the Germ-plasm’ (see p. 225) I attempted to make clear the nature of parthenogenesis, and I arrived at the conclusion that the difference between an egg which is capable of developing without fertilization, and another which requires fertilization, must lie in the quantity of nucleoplasm present in the egg. I supposed that the nucleus of the mature parthenogenetic egg contained nearly twice as much germ-plasm as that contained in the sexual egg, just before the occurrence of fertilization; or, more correctly, I believed that the quantity of nucleoplasm which remains in the egg, after the expulsion of the polar bodies, is the same in both eggs, but that the parthenogenetic egg possesses the power of doubling this quantity by growth, and thus produces from within itself the same quantity of germ-plasm as that contained in the sexual egg after the addition of the sperm-nucleus in fertilization.
This was only an hypothesis, and the considerations which had led to it depended, as far as they went into details, upon assumptions; but the fundamental view that the quantity of the nucleus decides whether embryonic development takes place with or without fertilization seemed to me, even at that time, to be correct, and to be a conclusion required by the facts of the case. Indeed, I thought it not unlikely that its validity might be proved by direct means: I pointed out that a comparison of the quantities of the nuclei in parthenogenetic and sexual eggs, if possible in the same species, would enable us to decide the question (l. c., p. 234).
I had thus set myself the task of making this comparison. The result of this investigation was to show that, as already mentioned, polar bodies are formed in parthenogenetic eggs. But even the first species successfully investigated revealed a further fact, which, if proved to be wide-spread and characteristic of all parthenogenetic eggs, was certain to be of extreme importance:—the maturation of the parthenogenetic egg is accompanied by the expulsion of one polar body, or, as we might express it in another way, the substance of the female pronucleus is only once divided, and not twice, as in the sexual eggs of so many other animals. If this difference between parthenogenetic and sexual eggs was shown to be general, then the foundations of my hypothesis would indeed have been proved to be sound. The quantity of nuclear substance decides whether the egg is capable of undergoing embryonic development. This quantity is twice as large in the parthenogenetic as in the sexual egg. I had, however, been mistaken in a matter of detail; for the difference in the quantities of nuclear substance is not produced by the expulsion of two polar bodies, and the reduction of the nuclear substance to a quarter of its original amount, in both eggs, while the parthenogenetic egg then doubles its nuclear substance by growth; but the difference is produced because the reduction of nuclear substance originally present is less in one case than it is in the other. In the parthenogenetic egg the nuclear substance is only reduced to one-half by a single division; in the sexual egg it is reduced to a quarter by two successive divisions. It is an obvious conclusion from this fact, if proved to be wide-spread, that the significance of the first polar body must be different from that of the second. Only one polar body can signify the removal of ovogenetic nucleoplasm from the mature egg, and the second is obviously a reduction of the germ-plasm itself to half of its original amount. This very point seemed to me to be of great importance, because, as I had foreseen long ago, and as will be shown later on, the theory of heredity forces us to suppose that every fertilization must be preceded by a reduction of the ancestral idioplasms present in the nucleus of the parent germ-cell, to one-half of their former number.
But before the full bearing of the phenomena could be considered, it was necessary to ascertain how far they were of general occurrence. There were two ways in which this might be achieved, and in which it was possible to prove that parthenogenetic eggs expel only one polar body, while sexual eggs expel two. We might attempt to observe the phenomena of maturation in both kinds of eggs in a species which reproduces itself by the parthenogenetic as well as the sexual method. This would be the simplest way in which the question could be decided, if it were possible to make such observations on a sufficient number of species. But the other method was also open, a method which would have been the only one, if we did not know of any animals with two kinds of reproduction. We might attempt to investigate the phenomena of maturation in a large number of parthenogenetic eggs, if possible from different groups of animals, and we might compare the results with the facts which are already certain concerning the expulsion of polar bodies from the sexual eggs of so many species.
I have followed both methods, and by means of the second I have arrived already, indeed some time ago, at the certain conclusion that the above-mentioned difference is really general and without exception. The first polar body only is formed in all the parthenogenetic eggs which I investigated, with the valuable assistance of my pupil, Mr. Ischikawa of Tokio. On the other hand, an extensive examination of the literature of the subject convinced me that there is not a single undoubted instance of the expulsion of only one polar body from eggs which require fertilization, and that there are very numerous cases known from almost all groups of the animal kingdom in which it is perfectly certain that two polar bodies are formed, one after the other. A number of the older observations cannot be relied upon, for the presence of two polar bodies is mentioned without any explanation as to whether they are expelled from the egg one after the other, or whether they have merely resulted from the division of a single body after its expulsion. In parthenogenetic eggs two polar bodies are also formed in most cases, but they arise from the subsequent division of the single body which separates from the egg. But such subsequent division is only of secondary importance as far as the egg itself is concerned, and is also unimportant in the interpretation of the process. The essential nature of the process is to be found in the fact that the nucleus of the egg-cell only divides once when parthenogenesis occurs, but twice when fertilization is necessary, and it is of no importance whether the expelled part of the nucleus of the cell-body atrophies at once, or after it has undergone division. We have, therefore, to distinguish between primary and secondary polar bodies. If this distinction is recognized, and if we leave out of consideration all doubtful cases mentioned in literature, such a large number of well-established observations remain, that the existence of two primary polar bodies in sexual eggs, and neither a smaller nor a larger number, may be considered as proved.
Hence follows a conclusion which I believe to be very significant,—the difference between parthenogenetic and sexual eggs lies in the fact that in the former only one primary polar body is expelled, while two are expelled from the latter. When, in July, 1886, I published a short note248 on part of the observations made upon parthenogenetic eggs, I confined myself to facts, and did not mention this conclusion. I took this course simply because I did not wish to bring it forward until I had made sufficient observations in the first of the two ways described above. I had hoped to be able to offer all the proofs that can be obtained before undertaking to publish the far-reaching consequences which would result from the above-mentioned conclusion. Unfortunately the material with which I had hoped to quickly settle the matter, proved less favourable than I had expected. Many hundred sections through freshly laid winter-eggs of Bythotrephes longimanus were made in vain; they did not yield the wished for evidence, and although continued investigation of other material has led to better results, the proofs are not yet entirely complete.
I should not therefore even now have brought forward the above-mentioned conclusion, if another observer had not alluded to this idea, referring to my observations and also to a new discovery of his own. In a recent number of the ‘Biologische Centralblatt,’ Blochmann249 gives an account of his continued observations upon the formation of polar bodies. It is well known that this careful observer had previously shown that polar bodies do occur in the eggs of insects, although they had not been found before. Blochmann proved that they are found in the representatives of three different orders, so that we may indeed ‘confidently hope to find corresponding phenomena in other insects.’ This discovery is most important, and it was naturally very welcome to me, as I had for a long time ascribed a high physiological importance to the process of the formation of polar bodies, and it would not be in accordance with such a view if the process was entirely wanting from whole classes of animals. To fill up this gap in our knowledge, and to give the required support to my theoretical views, I had proposed to one of my pupils, Dr. Stuhlmann250, that he should work out the maturation of the eggs of insects; and it is a curious ill-luck that he, like many other observers, did not succeed in observing the expected expulsion of polar bodies, in spite of the great trouble he had taken. It may be that the species selected for investigation were unfavourable: at all events, we cannot now doubt that a division of the egg-nucleus is quite universal among insects, for Blochmann, in his latest contribution to the subject, proves that the Aphidae also form polar bodies. He examined the winter-eggs of Aphis aceris, and ascertained that they form two polar bodies, one after the other. Even in the viviparous Aphidae, thin sections revealed the presence of a polar body, though Blochmann could not trace all the stages of its development. It appears that the polar body is here preserved for an exceptional period, and its presence can still be proved when the blastoderm has been formed, and sometimes when development is even further advanced. Skilled observers of recent times, such as Will and Witlaczil, have not been able to find a polar body in the parthenogenetic eggs of the Aphidae, and Blochmann’s proof of its existence seems to me to be of especial value, because the eggs of Aphidae are in many respects so unusually reduced; for instance, the primary yolk is absent and the egg-membrane is completely deficient, so that we might have expected that if polar bodies are ever absent, they would be wanting in these animals—that is, if they were of no importance, or at any rate of only secondary importance.