Kitabı oku: «Космогония двойной звезды Юпитер – Солнце», sayfa 2
Как вы смогли заметить, по мере усложнения материи нейтрино как бы вытесняются из формирующихся ячеек и накапливаются вне их объёма, что впоследствии при достаточном их накоплении становится причиной создания громадного давления внутри звезды.
Скачок давления в звезде вызван заполнением зоны рождения вещества 4-х дипольными структурами.
А вот теперь обратим внимание на то, что мы с вами и не заметили: ведь на наших глазах в виде 4-х дипольной структуры родился атом гелия – следующая по сложности за водородом разновидность элементарного состояния вещества, синтезированная звездой. Это элемент Ще с порядковым номером 2 в Периодической таблице Менделеева и массовым числом 4 (таблица Менделеева приведена в конце параграфа 4, в конце урока 1, также как Иллюстрация 1 в цветной вклейке).
А из чего родился атом гелия? Оказывается, из атомов водорода. Ведь исходный магнитик – это и нейтрон, и в то же время – атом водорода. В звёздных недрах в виде нейтрона магнитик стационарно существует недолго, не более 17 минут, далее он распадается с поглощением какого-нибудь внедряющегося нейтрино. Вне звёздных недр – в виде атома водорода – как пульсирующий диполь, сжимающийся и растягивающийся попеременно. И за счёт этого может существовать стабильно, непрерывно излучая и поглощая частичку нейтрино, с огромной частотой порядка 10 в пятнадцатой степени раз в секунду.
2. Что известно о зоне рождения вещества?
Где же в звезде происходит рождение вещества? Как велика зона синтеза текущего периода и где она находится? Зона синтеза – это вполне определённая ограниченная в размерах область звезды, заполненная ионизованными атомами водорода, – плазмой. Это смесь положительных и отрицательных частичек, а именно протонов р+ и электронов е-. Зона синтеза названа замечательным русским учёным, геологом и космофизиком Афанасием Евменовичем Ходьковым (1909–2003) зоной звёздной трансформации (ЗЗТ).
Это сравнительно тонкий слой плазменной субстанции в объёме звезды, заглублённый под её поверхностью не очень глубоко – порядка десятой части радиального размера сферы звезды. Причём зона синтеза текущего периода в своих размерах ограничена необходимыми параметрами реакций между элементарными частицами плазмы для образования из них более сложных структур. Именно потому, что эта зона чётко ограничена в размерах, то она заполняется синтезируемыми усложнёнными структурами в течение вполне определённого времени, хотя и очень длительного. Это – миллионы и миллиарды лет.
Пока в зоне синтеза есть свободные диполи, не успевшие объединиться в более сложные структуры, они могут поглощать нейтрино, выскакивающие в зоне реакций объединения. Но когда вся зона синтеза окончательно заполняется четырёх-дипольными структурами, оказывается, что выскочившим нейтрино некуда деваться, они мечутся и не могут найти выход. По достижении заполнения зоны синтеза синтезированными атомными ячейками внезапное увеличение давления не может уравновеситься весом вышележащих слоёв и наружного нейтринного давления на поверхность звезды. И что произойдёт? По всей видимости, вспышка и выброс зоны синтеза с наружной оболочкой звезды. В астрономии это явление носит название вспышки «новой». От звезды взрывообразно отделяется светящаяся плазменная оболочка с частью Зоны синтеза, получающей от звезды соответствующий момент вращения. Так рождение вещества, в данном случае гелия, приводит к рождению детища звезды из сброшенной ею оболочки.
Это происходит каждый раз по окончании синтеза атомов тех химических элементов, которыми заканчивается каждый период таблицы Менделеева (таблица в цветной вклейке).
Теперь поговорим о том, чем ограничена зона синтеза как область звезды, образующаяся в её недрах. Посмотрим на рисунок 4 и на иллюстрацию 2 с изображением экваториального сечения звезды.
Зона синтеза высветлена. Она имеет наружную и внутреннюю границы с радиусами r и r’ соответственно.
Рис. 4 и Иллюстрация 2.
Звезда радиуса сферы R с осью вращения, перпендикулярной плоскости рисунка
Наружная граница не может быть менее заглублена, чем R-r заглубления, которое должно быть достаточно большое. Это заглубление обеспечивает механическое давление в недрах, достаточное для слипания положительных и отрицательных зарядиков в диполи и дальнейшего их слипания в более сложные ячейки. С другой стороны, имеется ограничение для внутренней границы зоны синтеза. Она не может быть более заглублена, чем R–r’ заглубления, которое должно быть не слишком большое, так как при дальнейшем уменьшении радиуса зоны магнитный момент в слое окажется недостаточным на данной скорости вращения. Это заглубление обеспечивает магнитный момент нейтронной прослойки, достаточный при круговых токах на радиусе г’ для создания необходимой напряжённости магнитного поля. При этом необходимое условие протекания синтеза: r’ < r; R–r’ > R–r , а разница (r—r’) обусловливает толщину синтезирующего слоя в экваториальной плоскости звезды.
Посмотрим на меридиональное сечение звезды и её зоны звездной трансфрмации (ЗЗТ) в процессе синтеза ведущего периода (рис. 5).
Внутренняя граница ЗЗТ в меридиональных сечениях звезды оказывается границей цилиндрической поверхности радиуса s, а поперечное сечение сброшенной кольцевой оболочки ведущего периода повторяет форму сечения кольцевого сегмента зоны синтеза звезды в экваториальной плоскости.
Рис. 5.
Меридиональный разрез звезды, вращающейся вокруг оси z с угловой скоростью со. ЗЗТ заштрихована
3. Звёзды и планеты
Чем же отличаются планеты от звёзд?
Как мы убедились – всё в Космосе движется. А движение приводит к качественным изменениям в среде движущихся объектов. В звезде в процессе её жизни меняется всё: её размер, масса, угловая скорость вращения, а также качественный состав содержимого зоны синтеза. Последний меняется постепенно, но обусловливает скачкообразную смену режима атомообразования в конце периода. Вместе с ним скачкообразно изменяются физические параметры: уменьшается размер и масса звезды и увеличивается угловая скорость её вращения из-за последовательного сброса звёздных оболочек. И именно из этих сброшенных оболочек формируются планеты. В звезде разным стадиям синтеза соответствует свой режим атомообразования со своим расположением зоны синтеза, передвигающейся вглубь звезды по мере сброса оболочек. Вместе с ними меняются и условия фотонного излучения, в том числе, спектральный класс звезды как зависимость спектр (цвет) – светимость. Это важнейшая характеристика звезды, меняющаяся вместе со сменой стадии синтеза и изменением условий рождения вещества.
Известно семь спектральных классов звёзд Главной звёздной последовательности, соответствующих порядку возрастания № синтезируемого периода: О В A F G К М. Например, Солнце синтезировало 5 периодов химических элементов и соответственно находится в пятом по счёту спектральном классе излучения G. Попросту говоря, звезда – это самосветящийся ядерный котёл (хотя, само понятие «ядерный» несколько устарело). Условия синтеза вещества на микроуровне обеспечиваются звезде громадными космическими размерами исходного водородного облака – основным условием синтеза, отсутствие которого исключает возможность моделирования процесса в «лабораторных условиях». Поскольку планеты являются непосредственным следствием определённых этапов жизнедеятельности звезды, то это и является их основным различием. Физические условия существования планет коренным образом отличаются от сущности звёздного бытия.
Если в звезде идёт последовательный синтез атомов вещества от 1-го до последнего 7-го периода, то в планете идёт уже обратный процесс – распад синтезированного вещества, начиная с конца последнего 7-го периода.
Правда, оба эти процесса очень медленные. На Земле с момента её формирования из звёздной оболочки в планетное тело прошло 4,7 млрд лет. А за это время на Земле уже полностью распался второй ряд 7-го периода, и уже идёт распад первого ряда 7-го периода.