Kitabı oku: «Климат, или Что рулит судьбой цивилизаций», sayfa 5
Часть II. Климатическая криминалистика
Возраст Буратино всегда можно определить по спилу.
Народная мудрость
Занятия на военной кафедре. Майор объясняет студентам:
– Угол подъема пулемета на БТР составляет не более 30 градусов.
Вопрос из аудитории:
– Товарищ майор, а каких градусов – по Фаренгейту или по Цельсию?
Майор, после некоторых раздумий:
– По Фаренгейту.
Дружный хохот.
– Ну ладно, уж и пошутить нельзя. По Цельсию, конечно!
Студенческий анекдот
– С этим климатом порой случаются вещи прямо-таки мистические!.. Вам чай покрепче или пожиже? – Клименко поднял заварочный чайник.
– Средней паршивости, – махнул я. – А что вы там сказали про мистику? Неужто и вправду бывает климатическая мистика?..
– Ну как же!.. Вы знаете, когда случились три самые холодные зимы в России за последние 300 лет?
– Меня на экзамене по теплотехнике наш препод Мастрюков спросил, не летал ли я на воздушном шаре. Это из разряда вопросов, не требующих ответа. Конечно, нет! Не знаю.
– А вот я вам скажу. Три самые холодные зимы на территории Восточной Европы случились в 1708/09, 1812/13 и 1941/42 годах. И именно три эти самые холодные зимы трижды спасали Россию.
– Богоспасаемая земля… А что случилось в 1709 году?
– Полтавская битва.
– Так она же летом была!
– Да, разбили Карла летом на Украине, но разбили только потому, что половина его армии вымерла зимой от холода и голода. Карл подошел к Полтаве с половиной деморализованной армии. В сборнике летописей об этой зиме можно прочесть следующее: «Того ж року малороссияне везде на квартирах и по дорогам тайно и явно шведов били, а иных и живых к государю привозили, разными способами бьючи и ловлячи блудящих, понеже тогда снеги великие были и зима тяжкая морозами, от которых премного шведов погинуло…» Финал известен. Что касается 1812 года, то…
– Не надо, я хорошо знаю эту печальную историю. Как ни хотелось Сталину представить старичка Кутузова гениальным полководцем и освободителем России, наполеоновскую армию погубили все-таки морозы. Наполеон был далеко не дурак, он изучил метеорологические сводки по России за десятки лет и твердо знал, что сильные холода начинаются в декабре, а в ноябре не бывает температуры ниже минус десяти. Это его вполне устраивало. Но в тот год морозы ударили аж в октябре, а в ноябре столбик термометра упал до минус 26 градусов. Результат известен – выходя из Москвы, Наполеон имел 100 000 человек, а к Смоленску подошло около 30 000. Остальные просто замерзли! Кстати, у Кутузова в армии была та же картина… И я даже не знаю, с чем это связано. Может быть, вулкан где-нибудь взорвался?
– Не думаю. Арктические и антарктические ледовые керны показывают, что очень крупное извержение действительно было, но в 1808 году. Пока неясно, что за вулкан грохнул, но ясно, что где-то в тропической области, поскольку следы извержения видны в обоих полушариях. Теоретически похолодание 1812 года можно, конечно, попытаться притянуть к этому извержению. Но что тогда делать с Гитлером? С Гитлером вообще фантастика какая-то произошла! Во-первых, это было спокойное с точки зрения вулканизма время. Во-вторых, у немцев на тот момент была самая мощная метеорологическая служба, лучшая в мире – и это естественно: немцы вели огромное количество боевых операций в Арктике и Северной Атлантике, где погодный прогноз значит очень многое. Я был знаком с видным германским климатологом Германом Флоном, профессором Боннского университета. Он во время войны являлся одним из руководителей германской службы погоды. И скажу я вам, немцам уже тогда удавались прекрасные прогнозы!..
Так вот, до 1939 года в Европе уже несколько десятилетий не было холодных зим, люди стали отвыкать. И вдруг грянули почти подряд две очень холодные зимы – 1939/40 и 1941/42 годов. Это были две самые холодные зимы столетия. Ни Герману Флону, ни нашим метеорологам такое не могло присниться и в страшном сне. И нас в Финляндии, и немцев под Москвой эти зимы застали врасплох. У немцев не было ни соответствующей таким морозам одежды, ни ружейной смазки, ни зимних масел для танков… А теперь скажите, разве три самые морозные зимы, погубившие три вражеские армии, – это не чудесное совпадение?
– Я не верю в чудеса. В чем же была причина холодной аномалии 1941-го?
– Случилось нечастое событие – Североатлантические качели качнулись от Азорских островов к Исландии. Вероятно, то же самое произошло и в 1709, и в 1812 годах.
– Будем считать это совпадением. Не было бы счастья, да несчастье помогло. И давайте перейдем от мистических случайностей к пролетарским закономерностям…
Глава 1. Начало
Считается, что цивилизация родилась 5100 лет назад – с началом династического периода в Древнем Египте. Однако и за пять тысяч лет до этого знаменательного события на Земле жили люди. Причем весьма неплохо. Они еще не были объединены в государства, но уже вовсю строили города. Скажем, всякого въезжающего сейчас в Иерихон туриста встречает дорожный транспарант, радостно сообщающий, что Иерихону 10 000 лет. Это правда. Десять тысяч лет тому назад город Иерихон уже был. Причем представлял собой не какую-нибудь затрапезную деревенскую дыру, а настоящий город, то есть вполне приличное поселение с каменными домами и укрепленными стенами.
К слову сказать, в те далекие времена Черного моря еще не было – на его месте располагалось небольшое пресноводное озерцо. А еще раньше – в эпоху ледниковья – на месте этого маленького озерца разливался гигантский пресноводный водоем – Сарматское озеро. Оно соединялось с Каспием и на востоке достигало Арала, его северная граница располагалась где-то между Саратовом и Волгоградом, а на западе Сарматское озеро доходило до нынешнего Будапешта. Наполнялся этот гигантский водоем могучими реками, вытекавшими из великого северного ледника.
Но когда 10–12 тысяч лет назад ледовый щит значительно уменьшился в размерах, Сарматское озеро, более не пополняемое могучими ледниковыми реками, за пару тысяч лет почти испарилось, оставив после себя небольшое озеро на месте нынешнего Черного моря, а также отделившиеся друг от друга Арал и Каспий. Это озеро отделялось от Мраморного моря сухим Босфорским перешейком, поскольку уровень Мирового океана тогда был на 40 м ниже современного. Отчего же вместо босфорской «плотины» получился Босфорский пролив? Почему уровень океана скакнул на десяток метров вверх, ливанув в Черноморскую впадину?
Дело в том, что ледниковый щит таял неравномерно – сначала разрушились европейские ледники, затем североамериканские. Последним растаял так называемый Лаврентийский континентальный щит – шельфовый ледник, центр которого находился там, где сейчас располагается Гудзонов залив. Когда 8000 лет назад рухнула перемычка, отделяющая ледник от океанской воды, Лаврентийский щит начал интенсивно разрушаться и разрушился всего за 200 лет. Катастрофическая скорость! А льда там было больше, чем в нынешней Антарктиде. Этого количества хватило, чтобы уровень Мирового океана поднялся еще на 7–9 м. И вот тогда через Босфорскую протоку вода обрушилась в будущее Черное море водопадом, по мощи в десять раз превышающим Ниагару. Ах, как это было величественно! Вода прибывала со скоростью почти 20 см в день или 6 м в месяц, так что Черное море до его сегодняшнего уровня заполнилось всего за два года. Люди, жившие по берегам, вынуждены были сниматься с мест и уходить от наступающей на глазах воды. Таким образом, около 8 тысяч лет назад образовалась огромная диаспора людей, которые понесли в будущее легенду о всемирном потопе. Подробнее об этих трагических событиях написано в моей книге «Судьба цивилизатора», обращайтесь к первоисточникам… А мы, прежде чем перейти к дальнейшему рассмотрению человеческой истории через призму климатологии, должны сделать одно небольшое, но прекрасное отступление. Причем лирическим я бы его не назвал, уж извините…
Поговорим о датировках. Когда климатологи, археологи или историки утверждают, что некоему найденному предмету, скажем, семь тысяч лет, что они имеют в виду? С помощью чего определяют возраст находки? Часто историки координируются во времени с помощью физиков, и тогда речь идет о так называемом радиоуглеродном возрасте, то есть полученном при помощи радиоуглеродного анализа. Беда только в том, что практически ни один историк не знает, что радиоуглеродный возраст отличается от календарного, причем отличие это может быть весьма принципиальным. Скажем, если по радиоуглеродной шкале образцу 5000 лет, значит, на самом деле ему 6000 календарных лет. А расхождение в 1000 лет для эпохи Древнего Египта – это очень много, и здесь историк просто рискует спутать Древнее царство с Новым.
Есть страшное подозрение, что 99 процентов историков, которым посчастливится читать эту книгу, будут шокированы данным открытием. Только ради них я остановлюсь на радиоуглеродном методе чуть подробнее. Тем паче, что климатологи тоже широко пользуются этим методом и многие из них также не знают об отличиях радиоуглеродного возраста от календарного.
Уилларду Либби, который в сороковых годах придумал метод радиоуглеродной датировки, дали Нобелевскую премию, и поделом – очень уж удобная штука оказалась. А главное, понять, как метод работает, может даже домохозяйка. И раз так, грех не напомнить труженицам веников и кастрюль суть методики…
Записывайте… Углерод в земной атмосфере содержится в основном в виде диоксида – углекислого газа. Но помимо обычного углерода С12 в атмосфере присутствует и некоторая доля радиоактивных изотопов углерода – С13 и С14. Период полураспада С14 – 5730 лет. Резонное недоумение: при таком коротком периоде жизни все изотопы углерода давно уже должны были распасться, а раз они до сих пор присутствуют, значит, откуда-то постоянно берутся? Верно, под воздействием космического излучения в верхних слоях атмосферы изотопы углерода постоянно нарабатываются из атомов азота. Так что проблем с пополнением атмосферы углеродными изотопами никаких нет, домохозяйкам беспокоиться по этому поводу совершенно не нужно.
Любой живой организм дышит и питается, то есть обменивается углеродом с окружающей средой. А когда организм умирает, он перестает пополнять в себе запасы изотопов углерода и таким образом фиксирует внутри себя содержание С14. Дальше накопленный изотоп может только распадаться. Период полураспада мы знаем. Содержание изотопа в атмосфере тоже знаем. Определив, сколько в найденной деревяшке осталось С14, можно узнать, когда дерево было срублено. Если С14 в образце осталась ровно половина от его содержания в атмосфере, значит, с момента смерти прошло 5730 лет – период полураспада. Очень простая экспоненциальная зависимость. Отличненько.
Проблема только в том, что содержание С14 в атмосфере в разные периоды истории непостоянно! Оно зависит от колебаний климата, от соотношения площадей суши и океана, от солнечной активности, параметров глобального круговорота углерода (насколько активно углерод извлекается из атмосферы морской или наземной флорой и фауной)… Все эти колебания приводят к тому, что связь остаточного С14 со временем не такая простая, как на графике полураспада. Поэтому радиоуглеродное время может сильно отличаться от календарного. Поэтому существуют специальные таблицы поправок для перевода углеродного времени в календарное. Созданием этих таблиц занимается «умопомрачительное» число лабораторий – примерно полдесятка во всем мире. Это довольно сложный и утомительный процесс. Раз в пять-шесть лет таблицы поправок и калибровочные кривые подвергаются ревизии и уточнению. Но про них почему-то мало кто знает даже в научном мире.
Калибровочные кривые имеют весьма причудливый вид. Чтобы не пугать читателя, зашедшего в книжный магазин и начавшего перелистывать эту книжку, я постараюсь привести в ней как можно меньше графиков и формул, ибо каждая формула, как известно, вдвое снижает число читателей. А на словах скажу, что, например, реальной календарной дате – 299 год до н. э. соответствуют аж целых три радиоуглеродных возраста – 2171, 2200 и 2254 углеродных лет тому назад (отмечу, что точкой отсчета радиоуглеродного возраста по традиции считается 1950 год). А, допустим, радиоуглеродному возрасту в 2450 лет соответствует диапазон календарных лет шириной в 343 года (с 757 по 414 год до н. э.), причем, если учесть приборную ошибку измерения, равную 2–3 %, то ширина календарного диапазона возрастет в обе стороны еще лет на 50–70! Иными словами, если радиоуглеродный анализ покажет историку, что образцу 2450 лет, тот запросто может спутать время основания Рима с окончанием Пелопонесской войны.
Кроме того, «дальнобойность» радиоуглеродной методики ограничена относительно коротким периодом жизни изотопа углерода. За 5730 лет распадается половина С14, за следующие 5730 лет – половина от оставшейся половины, то есть три четверти изначального. И так далее. Чем больше прошло времени, тем с меньшими количествами атомов приходится работать исследователям. А изотопа в образце и без того мизер! И чувствительность физических приборов не беспредельна!
Самые большие энтузиасты метода говорят, что он может пристойно работать аж до 40 000 лет. Другие полагают, что надежные результаты радиоуглеродного анализа лежат в диапазоне до 10 000 лет и не глубже. Не будем спорить, скажем лишь, что таблицы корректировок, которые постоянно обновляются, делятся на две части. Первая часть заканчивается датой 7210 радиоуглеродных лет, что соответствует 9000 календарных лет назад. В этом диапазоне ошибка меньше, но все-таки может достигать 2–3 сотен лет. Второй участок в этих таблицах – до 22 000 лет. И здесь уже погрешность составляет плюс-минус 1000 лет, что для историков совершенно непригодно. Да и незачем им так глубоко заглядывать, история ведь началась буквально вчера. Так что «дальнобойные» ограничения радиоуглеродного метода касаются, скорее, не историков, а других ученых. Палеоклиматологов, например…
Есть и еще одна закавыка в радиоуглеродном методе – человеческий фактор. На свете не так уж много лабораторий, которые могут квалифицированно осуществлять радиоуглеродные датировки. Но очень много людей, которые хотят на этом заработать. Датировка одного образца стоит около тысячи долларов. Не кислые бабки, согласитесь. В России около 20 лабораторий, которые с удовольствием возьмут с вас эти деньги, но доверять результатам можно только трех-четырех из них.
Лабораторная установка для радиоуглеродного анализа не только очень дорогая (под миллион баксов), но и очень сложная – она устроена ничуть не проще реактивного самолета. Да и выглядит довольно впечатляюще – лес труб, несколько тонн металла, вакуумные насосы, масс-спектрометры, баллоны со сверхчистым гелием, аргоном, азотом…
На сегодняшний день одной из лучших в стране считается лаборатория радиоуглеродного датирования в Геологическом институте РАН. Руководил ею от самого ее основания удивительный дядечка с удивительным именем и удивительной судьбой – Леопольд Сулержицкий. На свете есть много технарей и естественников, перешедших работать в гуманитарные сферы, но практически никогда не встречается обратного – чтобы гуманитарий вдруг перешел работать в область техники. И это естественно: от сложного к простому всегда соскочить можно. Если ты имеешь хорошую образовательную базу, потом можешь заняться чем угодно – любой болтологией, а вот попробуйте поставить какого-нибудь гуманитария хотя бы простым инженером на завод… Там ведь знания нужны, а его ничему не учили!
Леопольд Сулержицкий – редчайшее исключение. Закончив Гнесинку по классу виолончели, он бросил это негодное занятие и стал настоящим человеком, то есть ученым. Это был единственный в нашей стране завлаб, не имеющий высшего образования (консерваторское, разумеется, за таковое я не считаю), и чтобы дать ему звание старшего научного сотрудника, потребовалось специальное распоряжение Президиума АН СССР. И такое распоряжение было издано, что делает честь нашей Академии. Сулержицкий – настоящий фанат науки. Кроме науки ему ничего не нужно. У Леопольда Дмитриевича был всего один костюм, в котором он ездил в экспедиции, ходил на работу и на Дорогомиловский рынок – за картошкой. Он ли не святой?..
Когда-то Сулержицкий с упоением работал на острове Врангеля, где были найдены останки мамонтов, которые, как оказалось, жили всего 2500 лет назад, во времена Рима. Года через два после этого «Нейчур» опубликовал об этой сенсации статью. В публикации «Нейчура» восемь подписей и нет фамилии Сулержицкого. Хотя именно Сулержицкий на Врангеле ковырял этих мамонтов и делал датировку. Когда коллеги Леопольда Дмитриевича возмутились этим фактом, тот только рукой махнул. Сулержицкому не важна была слава земная, его интересовал сам процесс. Точно, святой…
Впрочем, даже если какой-нибудь начинающий климатолог принес образец самому Сулержицкому, это еще не значит, что будет получен адекватный результат. Потому что львиная доля успеха зависит от того, насколько правильно образец отобран. Археологу в этом смысле проще, он нашел какой-нибудь обломок корабля или деревянный щит, приволок его в приличную лабораторию и получил приличный результат. А вот для климатолога ошибка в выборе дерева может стать фатальной. Не все деревья одинаково полезны! И выбор образца здесь лежит далеко за границами профессиональных навыков – почти что в области искусства.
Погодите-ка, погодите. А зачем вообще климатологу сдавать на радиоуглеродный анализ какие-то деревья?..
Вы правы, это тоже нуждается в пояснении. Потому что если я пояснений не дам, а просто заявлю, к примеру, что интеллектуальный всплеск Осевого времени, ставшего поворотным для истории всей человеческой цивилизации, был вызван мощным похолоданием, то какой-нибудь бывший, но гордый студент исторического факультета МГУ, презрительно оттопырив нижнюю губу, обязательно спросит:
– А с чего вы взяли, что тогда было глобальное похолодание? Откуда вообще может быть известно, когда и насколько падала или поднималась среднемировая температура? Тогда ведь не было метеорологических станций, компьютеров и всемирной службы погоды.
Не в бровь, а в глаз – не было! Не зря человек историю учил в университете. Придется объяснять…
Есть такая штука – криминалистика. Наука о следах. О том, как по мельчайшим царапинкам восстановить картину того, что происходило без свидетелей. Палеоклиматология – та же криминалистика, только выслеживает она одного «преступника» – климат. И методов для поимки ускользающего беглеца у нее много. Пробежимся по ним – исключительно в целях общей эрудиции. А кому копаться в мусоре былых эпох лень, может сразу перейти к приключениям, то есть третьей части этой бессмертной книги.
Глава 2. Когда деревья были маленькими
По понятным причинам имеет смысл поговорить только о тех методах реконструкции климата, которые позволяют восстановить климатическую картину последних нескольких тысяч лет. Поэтому геологические и микрофаунистические методы мы описывать не будем: первые работают в масштабах десятков и сотен миллионов лет, вторые – десятков и сотен тысяч лет. Микрофаунистика изучает микроостанки древней фауны в осадочных породах, как правило, в донных отложениях озер, морей и океанов. Скорость накопления осадков чрезвычайно мала, поэтому в одном небольшом образце содержится информация сразу о тысячах и десятках тысяч лет. Это очень грубо, нам бы что-нибудь поточнее – методика реконструкции температуры должна давать не среднее значение по столетию, а в идеале иметь годовое, а лучше бы и сезонное разрешение, чтобы мы могли сказать: «Ага! зима 1319 года была холодной и имела температуру на 1,5 градуса ниже нынешней климатической нормы».
И такие методы у науки есть.
Дендрохронология
В начале XX века немецко-русский климатолог Владимир Петрович Кеппен (родившийся в Санкт-Петербурге и потом переехавший на ПМЖ в Германию) сказал, что растительность есть кристаллизованный климат. Высказывание было очень метким, всем понравилось, но справедливость требует отметить, что о том же самом догадывались еще древние греки. Они понимали: какова флора – таков и климат. Точнее, наоборот, каков климат, такова и растительность.
А какова растительность – таков и животный мир.
А какова флора и фауна – таковы и люди, поскольку климат, растительность и живность полностью определяют условия проживания людей в данной местности. Собственно, любому нормальному человеку это должно быть понятно – достаточно поставить рядом грека, папуаса и чукчу, чтобы воочию убедиться: условия жизни полностью определяют способ жизни (одежду, обычаи, мораль) и внешний облик людей.
Деревья – живые хронисты эпохи. Смена времен года отражается на спилах годовыми кольцами. Каждый год образуется новое кольцо. Правда, не все деревья так старательны – тропические и субтропические деревья не имеют выраженных годовых колец, поскольку там нет резкой смены времен года, соответственно, зима не оставляет тяжкий рубец на многострадальном теле дерева.
Наиболее удобны для изучения годовых колец калифорнийские секвойи. Во-первых, стволы толстенные, поэтому считать годовые кольца легко – каждое кольцо толщиной в палец. Во-вторых, секвойи живут тысячи лет. Жалко, конечно, такое дерево – толщиной с дом, помнящее Джорджа Вашингтона! – спиливать, но зато, изучая спил, можно заглянуть сразу на сотни лет назад. Кстати, теперь спиливать деревья вовсе необязательно, поскольку изощренная западная наука изобрела малотравматичный способ получения нужной информации – при помощи специальных тонких буров, ими можно вынуть керн, не губя дерево.
Что же видно по кольцам? По кольцам видно, хорошо было дереву в тот период или плохо. Если дереву хорошо, оно быстро толстеет, годовые кольца получаются широкие. А вот если дереву чего-то не хватает, годовое кольцо получается узкое. Но вот чего не хватает дереву для полноценного роста – тепла или влаги? То есть холодное было время или засушливое? На этот вопрос дендрохронологический метод ответить не может. И это первый недостаток дендрохронологии.
Второй недостаток заключается в том, что ширина кольца дает представление о климатических условиях только в течение вегетационного периода, то есть когда дерево растет. А в Арктике, например, вегетационный период длится всего-то два месяца. На юге – подольше. Но в любом случае, кольцо, хоть и называется годичным, содержит информацию только о том, каким было лето. Вообще-то специалисты об этом знают, но с большой охотой забывают и порой пытаются трактовать данные о полученных на основании изучения колец температурах как среднегодовые. Именно так и родилась скандально-сенсационная публикация американских ученых в 1998–1999 годах.
Это была бомба! Американцы решили реконструировать среднеглобальную температуру на протяжении последней тысячи лет, используя только дендрохронологические данные, причем высокоширотные. И получилось у них, что с начала XX века на планете происходит совершенно беспрецедентное потепление, которое превзошло по масштабу все, что было на протяжении реконструируемого периода. Это абсурд, что мы увидим в дальнейшем. Классический пример того, как жестоко можно ошибиться, не осознавая возможностей метода.
Есть и еще одно обстоятельство, которое необходимо отметить. Математическая обработка полученной дендрохронологической информации настолько сложна и многоступенчата, что в силу этой сложности на руках у исследователя остаются только климатические события с временным масштабом в несколько десятилетий. Столетние колебания при математической обработке срезаются. Наиболее опытные и честные дендрохронологи прямо пишут об этом, правда, очень скромно: в 20-страничной статье – на три строчки. Типа, «при фильтровании удаляются гармоники…». Какие такие гармоники там удаляются, из читающих неспециалистов мало кто понимает. Тем не менее нам с вами нужно усвоить еще один недостаток метода – даже в самых длинных дендрохронологических рядах (несколько тысяч лет) нельзя увидеть столетних и тем паче тысячелетних колебаний: «гармоники срезаются».
Но зато у дендрохронологии есть и свое преимущество: метод дает годовое разрешение. В этом его неоспоримое достоинство. Вот пример одного из корректных дендрохронологических исследований.
У нас в России секвойи, к сожалению, не растут. Поэтому уральские ученые из Института экологии растений и животных Уральского отделения РАН (Екатеринбург) давно придумали использовать для дендрохронологических исследований сибирскую лиственницу. Это замечательное дерево позволило заглянуть на четыре тысячи лет назад и отметить годы, в которые происходили экстремальные климатические события.
Выбор лиственницы может показаться странным – ну, какие там годичные кольца у дерева, растущего на краю западносибирской тундры! И вправду тоненькие. Но есть у лиственницы и преимущество. У обычного дерева с годами растет не только диаметр ствола, но и толщина коры, то есть теплоизолятор. Поэтому толстое дерево может не почувствовать удара стихии – на спилах больших деревьев находят меньше годовых колец, поврежденных летними заморозками (так называемые морозобойные кольца). А вот лиственница с тонкой опадающей корой исправно сигнализирует ученым о каждой погодной неурядице. И хоть диаметр ее ствола мал, зато и толщина коры редко превышает 3–5 мм.
Изучение морозобойных колец позволило выделить годы, в которых на Полярном Урале летом температура опускалась ниже минус 5°С – 1466, 1573, 1601, 1708, 1783, 1797, 1811, 1857, 1862, 1872, 1882, 1891, 1968 гг. Причем, самые сильные заморозки пришлись на 1601, 1783, 1857, 1882 и 1968 гг.
(1601 год нам уже знаком. Морозобойные кольца, соответствующие этому году, есть и у сосен, растущих в Северной Америке. 1783 год знаком нам тоже. Сухой туман с 24 мая по 8 октября этого года покрывал территорию от Норвегии до Сирии, от Англии до Алтая. В российской столице в середине лета, как отмечали современники, «солнечный свет был слабее, чем свет полной Луны». Это постарался вулкан Лаки в Исландии. Про остальные годы, возможно, мы еще поговорим, если случай представится.)
Мало выбрать хорошую лабораторию для анализа образцов, нужно еще правильно отобрать сами образцы. Уральцы свои образцы отобрали правильно – они брали одиноко растущие лиственницы. Это принципиально! Не важно, с чем вы имеете дело – с кустами или деревьями, но отбирать в качестве образцов необходимо только отдельно стоящие деревья на границе сообщества – на границе лесотундры, леса, альпийских лугов: они острее чувствуют удары судьбы. В общем, нужны деревья-маргиналы, которые меньше зависят от сообщества и больше от климата. У них сигнал ярче.
Штук двадцать строгих правил отбора образцов честно изложены в специальных брошюрках, изданных на газетной бумаге тиражом эдак в 200 экземпляров. Никто их не читает, кроме фанатов. А зря, ибо, как мы уже отмечали, неправильно отобранный образец плюс левая лаборатория могут загубить любую работу. А поскольку фанатов и хороших лабораторий намного меньше, чем любопытных исследователей, 70–80 % работ по дендрохронологии годятся только на то, чтобы разжигать ими костер.
Палинология
Название метода произошло от английского слова «pollen» – пыльца. Палинология позволяет реконструировать температуру и уровень осадков по ископаемым остаткам спор и пыльцы растений. Почему это оказывается возможным?
Уже давно в науке существует двухпараметрическая диаграмма Холдреджа. По вертикали на ней отложена среднегодовая температура, а по горизонтали – среднегодовое количество осадков. На самой диаграмме нанесены линии, ограничивающие все известные на свете растительные сообщества – арктическая тундра, тайга, широколиственные леса, пустыня, полупустыня, лесостепь, степь, саванна, тропические леса… То есть, располагая всего двумя параметрами – среднегодовыми температурой и влажностью, можно сказать, в какой конкретно зоне вы находитесь. Если, скажем, осадков у нас 600 мм, а среднегодовая температура плюс 5 градусов – это смешанные леса в умеренной зоне – Москва. Если осадков 4000 мм, а среднегодовая температура плюс 27 градусов – влажные тропические леса. Температура минус 5 градусов и всего 200 мм осадков – арктическая пустыня.
Иными словами, если где-то в природе мы нашли законсервированные остатки пыльцы растений, которые в состоянии датировать по времени, то получаем самый настоящий палеотермометр! Прекрасными хранилищами таких остатков являются торфяные болота. Как вы, несомненно, помните из школьных уроков природоведения, торф – это недоделанный уголь. На 98 % он состоит из растительных остатков и на 2 % – из останков животных и микроорганизмов. Торф, по сути говоря, грязь. Особую ценность этой грязи придает то обстоятельство, что скорость торфонакопления очень велика – она может достигать нескольких миллиметров в год. Это вам не геологические осадки! Извлекая из болота колонки торфа, мы имеем подробную информацию – буквально по годам.
Но как в дендрохронологии для отбора палеоклиматических проб подходят не все деревья, так и в палинологии для забора кернов подходят не все болота. Только верховые! Низинные болота совершенно нас не интересуют, потому что в них стекает вода из вышерасположенных болот, полностью перемешивая всю картину. Исследователям нужны только те болота, с которых осуществляется сток.
Далее. Совершенно не подходят для исследования болота, расположенные близко от людей. Напротив, хороши лишь те, которые находятся как можно дальше от объектов хозяйственной деятельности. Дело не в том, что в болота могут попасть «цивилизационные загрязнения» – нефтепродукты или какая-нибудь химия, это не так страшно. Страшнее биологическое загрязнение. Если болото находится в километре от садов или полей, значит там за последние несколько сотен или тысяч лет все слои торфа будут забиты помехой – пыльцой культурных растений.
Поэтому палинологи лезут в чащи тропических лесов, в сибирскую медвежью глушь, на плоскогорья Патагонии. Кстати, Россия для палинологов – отличное место, поскольку почти вся она представляет собой сплошной медвежий угол – от Чукотки до Белоруссии и от Таймыра до Северного Кавказа.
…После того, как палинологи извлекают из болота торфяные керны, они изучают их по слоям – смотрят, в каком слое пыльца каких растений содержится. Причем ищется не пыльца чего-то конкретного, например, дуба или одуванчиков, а выделяется многовидовое разнообразие, ибо только десятки видов дают полную картину. Скажем, если в слоях торфа травянистые сообщества преобладают перед древесно-кустарниковыми видами, значит, когда-то здесь была степь. В общем, принцип ясен…
Ücretsiz ön izlemeyi tamamladınız.