Kitabı oku: «Пламенный насос. Естественная история сердца», sayfa 2

Yazı tipi:

Часть 1
Дикие сердцем

1
Размер имеет значение I

Один размер не подходит всем.

Автор неизвестен (возможно, Фрэнк Заппа)

В августе 2018 года я отправился в Королевский музей Онтарио в Торонто вместе с художницей Патрисией Дж. Уинн, чтобы осмотреть знаменитое сердце синего кита. Мы с Патрисией работаем вместе в Американском музее естественной истории с середины 1990-х годов, дружим, и она иллюстрировала каждую статью, главу и книгу (художественную и документальную), которые я когда-либо написал. Хотя выставка синих китов уже закрылась и экспонат хранился в отдельном здании, исследователь Билл Ходжкинсон распаковал сердце перед нашим прибытием. В комнате размером с небольшой авиационный ангар законсервированное сердце кита было установлено на стержне из нержавеющей стали толщиной пять сантиметров, что выглядело так, будто его проткнули снизу. Нижний конец стержня крепился к деревянной подставке на полу, а верхний соединялся с невидимой для зрителей металлической арматурой, которая служила постоянным внутренним каркасом сердца.

Официальные размеры экспоната составляют 1,07 метра по вертикали и 97 сантиметров в ширину, и я был весьма удивлен, обнаружив, что он возвышается надо мной на высоту примерно два метра. Объяснение дополнительной высоте крылось в массивных кровеносных сосудах, расположенных в верхней части пластинированного органа. Над всем остальным находилась дуга аорты и ее ответвления, пара сонных артерий3, которые когда-то несли насыщенную кислородом кровь от левого желудочка сердца к голове животного. Если, как уже упоминалось, предсердия можно назвать приемными камерами сердца (левое и правое предсердия получают кровь из легких и тела соответственно), то желудочки – это насосные камеры сердца: правый желудочек перекачивает бедную кислородом и богатую СО2 кровь в легкие, а левый – насыщенную кислородом кровь для снабжения клеток организма.

Во время пластинирования сердца синего кита в кровеносные сосуды ввели особый вид окрашенного силиконового полимера, и поэтому вены и артерии теперь можно было различить: вены – синие, артерии – красные. Разноцветное сердце было действительно очень красивым, и меня сразу же привлек вырез в форме иллюминатора, который проделал в правом желудочке специалист по пластинации Владимир Череминский. Окно позволяет зрителям заглянуть внутрь камеры сердца, где, помимо всего прочего, они могут увидеть странно выглядящую конструкцию из мышечных нитей толщиной 2,5 сантиметра, которые тянутся вдоль стенок желудочка. Эти нити известны врачам и анатомам под названием trabeculae carnae (лат. «мясистые гребни»), их более мелкие версии можно обнаружить у многих млекопитающих, в том числе у человека. Гребни увеличивают площадь поверхности стенок желудочков в сравнении с гладкой стенкой, упаковывая больше мышечных волокон в ограниченное пространство. Это важно, потому что дополнительные мышцы обеспечивают более сильные сокращения желудочков, выталкивающие кровь из сердца. Другие функции этой странно выглядящей поверхности камеры еще предстоит исследовать.


Правое и левое предсердия китового сердца тоже сокращаются, но их стенки тоньше, потому что работа предсердий – перекачивание крови в соседние желудочки, а не в тело – менее трудна. Между предсердиями и желудочками находятся атриовентрикулярные клапаны, название которых точно отражает их расположение. Через иллюминатор, проделанный Череминским, посетители музея видели правый атриовентрикулярный клапан синего кита диаметром с детский барабан. У людей диаметр соответствующего (правого атриовентрикулярного) клапана 2,5–3 сантиметра, площадь 7–9 квадратных сантиметров, и он более известен под названием трехстворчатый, или трикуспидальный7, поскольку имеет три створки8.

Атриовентрикулярные клапаны регулируют кровоток от предсердий к желудочкам, но не менее важная их работа – препятствовать тому, чтобы во время сокращения желудочков кровь меняла направление и возвращалась обратно в предсердия. Для этой функции жизненно важна – и хорошо видима в сердце синего кита – дюжина или около того жестких волокон под названием chordae tendineae9. Их просторечное именование – сердечные струны, поскольку они напоминают отрезки струны. Эти волокна в основном состоят из структурного белка – коллагена10. Одним концом сухожильные нити прочно прикреплены к дну желудочка, а другим к створке клапана, мешая ей «выворачиваться» в предсердие во время сокращения желудочка и эффективно герметизируя две камеры.

Чтобы представить себе это, вообразите собаку в ошейнике, привязанном к длинному поводку, другой конец которого воткнут в землю. Собака (представляющая створки клапана) может двигаться только до тех пор, пока поводок (chordae tendineae) не натянется, не позволяя пройти в открытые ворота. У людей термин «пролапс атриовентрикулярного клапана» означает состояния, когда одна или более его створок выпячиваются в предсердие (как растянувшийся от постоянного дерганья собачий поводок, который в конце концов пропускает пса за ворота). Поскольку этот пролапс разрушает изоляцию между предсердием и желудочком, во время сокращения часть желудочковой крови «срыгивается» обратно в предсердие, вместо того чтобы покинуть сердце, как должно быть в норме. Эти так называемые «прогибающиеся» клапаны могут появиться после инфаркта миокарда, инфекций наподобие бактериального эндокардита (который часто обнаруживают у людей, употребляющих наркотики внутривенно) или ревматизма – ныне редкого осложнения нелеченой стрептококковой ангины или скарлатины. Пролапс митрального клапана бывает и врожденным.

Проблемы с клапанами также могут быть следствием старения. По мере того как сердечные клапаны затвердевают и становятся менее эластичными, они теряют способность эффективно изолировать сердечные камеры. С каждым ударом сердца часть крови возвращается обратно в предсердие, из желудочка ее откачивается меньше, и поэтому ему приходится работать усерднее (увеличивая скорость или сильнее сокращаясь), чтобы компенсировать это. Дополнительные усилия могут вызвать повышенную нагрузку на сердце, что способно привести к серьезным проблемам. Они становятся особенно очевидными, если сердце достигает точки, в которой оно больше не может обеспечивать организм достаточным количеством богатой кислородом и питательными веществами крови.



После того как кровь проходит через атриовентрикулярные клапаны, заполняя правый и левый желудочки, она должна затем миновать полулунные клапаны, названные так из-за створок в форме полумесяца. Когда желудочки сокращаются, кровь устремляется через них в две большие артерии. С правой стороны находится легочный ствол, который посылает бедную кислородом кровь в легкие по ветвящимся от него легочным артериям. С левой стороны сокращение желудочков перекачивает насыщенную кислородом кровь в аорту, ветви которой распределяют кровь по всему телу. Хотя анатомия полулунных клапанов отличается от атриовентрикулярных – у первых нет сухожильных хорд, – легочные и аортальные полулунные клапаны также препятствуют обратному потоку крови, теперь из легочной артерии и аорты в желудочки.

У людей небольшие пороки клапанов часто не имеют симптомов и не требуют лечения. В более серьезных случаях пролапс клапана может вызвать нерегулярное сердцебиение (аритмию), головокружение, усталость и одышку, и для его устранения может потребоваться хирургическое вмешательство. До начала 2000-х годов ремонт или замена клапанов требовали сложной операции на открытом сердце. Однако сейчас транскатетерную замену клапанов нередко делают с помощью небольших разрезов, а то и вовсе без них. Это следствие значительных достижений в катетеризации сердца – процесса, история которого интересна не меньше, чем мог бы придумать любой писатель-фантаст. Но о нем позже.

Чтобы дать зрителям возможность посмотреть чуть глубже поверхности сердца синего кита, мастер-пластинатор Череминский удалил еще и часть висцерального листка перикарда. Это тонкий защитный слой сердца, лежащий поверх всех этих мышц, а также внутренний слой окружающего сердца мешка – перикарда, который смазывает и смягчает сердце. Чтобы представить себе связь между сердцем и перикардом, вообразите пакет на зип-застежке, в который налили немного воды. Вдавите кулак (сердце) в бок пакета так, чтобы он обернулся вокруг. Пакет с водой – это перикард, а его часть, прижатая к вашему кулаку, – висцеральный листок перикарда. Пространство внутри пакета – полость перикарда, частично заполненная поступающей в него перикардиальной жидкостью. Чтобы завершить метафору: самая дальняя от вашего кулака часть зип-пакета – это париетальный перикард, и он прикреплен к окружающим стенкам грудной полости. Это соединение закрепляет сердце на месте, одновременно защищая его от внешних сотрясений. Стоит отметить, что перикард не содержит сердце, а скорее обернут вокруг него.



Рассмотрев пластинированное сердце кита изнутри и снаружи, я оставил свою подругу Патрисию на складе, чтобы она сделала набросок экспоната, а сам отправился в Королевский музей Онтарио побеседовать с людьми, которые занимались его восстановлением и сохранением. Но кроме истории о том, как появился этот единственный в своем роде экземпляр, меня весьма интересовало, узнали ли Жаклин Миллер, Марк Энгстром и их коллеги что-то новое.

Я спросил Миллер о странной форме пластинированного сердца. Как правило, сердце млекопитающих имеет коническую форму, сходящуюся в одной точке вверху или внизу. Меня поразил тот факт, что у синих китов верхушка сердца расщеплена. Миллер объяснила, что эта раздвоенность характерна для полосатиковых (название семейства самых крупных усатых китов11). Еще одна уникальная особенность, рассказала она, заключается в том, что это конкретное сердце более плоское и широкое, чем у большинства млекопитающих.

«Типичное земное млекопитающее имеет спиральное сердце – сердце, в котором соединительная ткань и мышечные волокна ориентированы так, что закручиваются спиралью вокруг левого и правого желудочков, – добавил Энгстром. – Когда сердце сокращается, общее действие больше похоже на выжимание полотенца».

Но у полосатиковых волокна идут прямо от верхней части (основания) сердца к нижней, а не по спирали.

«Я думаю, что, когда синие киты глубоко погружаются12, их сердце сжимается, – сказал Энгстром. – Оно продолжает биться, но сжимается из-за давления».

Поэтому – с чем пришлось столкнуться Миллер и ее команде в Роки-Харбор – после того, как сердце отделили от связок и извлекли из тела, оно сдулось, как выразилась Миллер, «словно огромный губчатый мешок», и в процессе консервации пришлось снова его наполнять.

Кроме перечня того нового, что исследователи из Королевского музея узнали о синих китах, Энгстром упомянул, сколько раз за карьеру его спрашивали о фактическом размере самого большого сердца в мире.

– Я уже устал от этого вопроса, – признался он. – И я в самом деле хотел бы иметь возможность сказать: «Вот такое здоровенное» – и потом просто указать на него.

Десятилетиями в популярной и научной литературе писали, что сердце синего кита должно быть размером с седан и весить не менее тонны. Миллер рассказала, что, готовясь к извлечению сердца, они с коллегами прочли, будто «вы сможете плыть вниз по одному из крупных сосудов, предположительно по каудальной полой вене, самому большому сосуду в сердце синего кита».

Когда я осматривал впечатляющую сосудистую сеть, прикрепленную к экспонату Королевского музея Онтарио, я отметил, что даже самый большой кровеносный сосуд не казался достаточно широким, чтобы сквозь него мог проплыть человек, хотя я полагаю, что выдра или мигрирующий лосось могли бы совершить путешествие с относительной легкостью.

Действительно, Миллер сказала, что после того, как сердце законсервировали, оно оказалось значительно меньше, чем, как считалось, должно быть. И это был вовсе не недорослый синий кит. Так почему же оно оказалось намного меньше, чем предполагалось?

Выяснилось, что сердца синих китов просто не так велики, как у большинства других млекопитающих. Хотя по человеческим меркам сердце синего кита довольно крупное, оно, судя по всему, составляет лишь около 0,3 % от общей массы тела животного. Для сравнения: было подсчитано, что относительный размер сердца как у мышей, так и у слонов составляет около 0,6 %.

Интересно, что некоторые из самых маленьких животных в мире имеют непропорционально большие сердца. Например, масковая бурозубка (Sorex cinereus) – одно из самых маленьких млекопитающих в мире, весящее около пяти граммов13, но ее сердце составляет около 1,7 % от массы тела, что примерно в три раза больше, чем можно было бы ожидать у типичного наземного млекопитающего, и почти в шесть раз больше относительного размера сердца синего кита. Сердца птиц, как правило, относительно больше, чем у млекопитающих, из-за метаболических потребностей полета. У колибри, самая маленькая из которых может весить всего два грамма (меньше десятицентовой монеты), соотношение веса сердца к весу тела еще более экстремально: сердце достигает 2,4 % от веса тела. Условно говоря, это означает, что сердца колибри в восемь раз больше, чем у синих китов.

Считается, что причина обладания относительно большим сердцем связана с образом жизни маленьких и гиперактивных. Например, колибри могут махать крыльями со скоростью 80 раз в секунду, а землеройки – настолько неустанные охотники, что, как мне объяснили в те дни, когда я был аспирантом в Корнеллском университете и специализировался на изучении млекопитающих, они умрут от голода, если их не вытащить из ловушки в течение часа. Маниакальное поведение этих крошечных животных вызывает чрезвычайно высокую потребность клеток как в энергии, так и в кислороде. Эти метаболические потребности удовлетворяются в том числе за счет увеличения частоты сердечных сокращений, что увеличивает и скорость, с которой насыщенная кислородом и питательными веществами кровь перекачивается в организм. В результате значения частоты сердечных сокращений поистине поражают. Частота сердечных сокращений колибри может достигать 1260 ударов в минуту, а землеройки держат рекорд среди позвоночных на уровне 1320 ударов в минуту – примерно в семь раз больше максимальной частоты сердечных сокращений 35-летнего человека.

Хотя это сногсшибательные цифры, возможность увеличения частоты сердечных сокращений не беспредельна, и исследователи считают, что существует максимальная частота, с которой может биться сердце. Для землеройки один удар сердца длится 43 миллисекунды – это 43 тысячных секунды. В течение этой доли секунды сердце должно наполниться венозной кровью, сжаться, выпустить ее и расслабиться, готовясь к следующему циклу наполнения. Все это должно происходить именно настолько быстро – и если землеройки и не находятся на верхнем пределе сердечного ритма, то они чертовски близки к нему. То есть если физическая конструкция сердца ограничивает его чем-то вроде максимума в 1400 ударов в минуту, то единственный способ прокачать больше крови – это увеличить размер сердца4. Таким образом, бо́льшие камеры способны принимать и перекачивать относительно бо́льшее количество крови с каждым ударом145. Это объясняет сравнительно огромный размер сердца таких существ, как землеройки и колибри. Но, как мы скоро увидим, увеличение размера сердца у сверхмалышей тоже имеет свои пределы.

Но, прежде чем оставить в покое сердца синих китов в частности и китов вообще, следует подчеркнуть, что нам еще предстоит узнать гораздо больше: как именно эти сердца сжимаются и как их владельцы выживают, когда это происходит? Другие ныряющие млекопитающие, например тюлени, снижают частоту сердечных сокращений и перекрывают приток крови к различным областям тела. Обладают ли синие киты такими же кислородосберегающими приспособлениями? Предварительное изучение показывает, что такое возможно: недавнее исследование биолога Джереми Голдбогена и его коллег из Стэнфордского университета продемонстрировало, что частота сердечных сокращений синего кита может снижаться до двух ударов в минуту15 6. Что касается анатомии, то остаются и другие серьезные вопросы, некоторые из них так же просты, как идентификация кровеносных сосудов в запутанном скоплении, прорастающем из ныне известного экспоната Королевского музея Онтарио. До тех пор пока не будут проведены дальнейшие исследования, большая часть физиологии сердца полосатиковых останется в области гипотез и предположений.

2
Размер имеет значение II

Мистер Микроб настолько уж мал, Что вряд ли кто-то его видал.

Хилэр Беллок

Для тех из вас, у кого тело меньше одного миллиметра в поперечнике: ничего существенного в этой книге о вас не сказано. Почему, спросите вы? Ответ заключается в том, что большая часть из уже описанного здесь и того, что последует далее, рассказывает о сердцах. По определению, сердце – это полый мышечный орган, который получает кровеносную жидкость из тела и ритмично откачивает ее обратно. В совокупности насос, жидкость и сосуды, по которым она движется, называются системой кровообращения… которой у вас нет. Благодаря вашему крошечному размеру питательные вещества и кислород могут распределяться по вашим клеткам (или клетке, если вы достаточно малы, чтобы иметь только одну), а отходы удаляться из них путем простого обмена с внешней средой, которая для большинства из вас, вероятно, состоит из воды.

Этот обмен называется «диффузия», жизненно важный процесс для всех живых существ, будь то микробы или синие киты. Обычно диффузия происходит, когда молекулы – например кислород, питательные вещества или отходы – находятся в различных концентрациях по разные стороны барьера. Представьте, что вы только что прибрались в комнате, запихнув все лишнее в шкаф и с силой закрыв дверь. Внутри шкафа концентрация барахла выше, чем снаружи, а дверь служит барьером. Если бы вы прорезали дыру в двери, все, что меньше ее, имело бы потенциал вырываться и вываливаться наружу, всегда перемещаясь из области более высокой концентрации (ваш шкаф) в область более низкой концентрации (ваша комната). Так что теперь, вместо того чтобы злиться всякий раз, когда вы открываете дверь шкафа и барахло вываливается, думайте о мини-лавине как о пожитках, следующих за градиентом концентрации.

Но что общего у шкафа и системы кровообращения? Как уже упоминалось ранее, ответ связан с одной из ее ключевых функций, которая состоит в доставке питательных веществ и кислорода извне к клеткам и тканям внутри тела. И наоборот, кровеносные системы помогают выводить потенциально вредные вещества, такие как токсины, клеточные отходы и углекислый газ, из организма, прежде чем те вызовут проблемы.

Организмы толщиной менее миллиметра обычно состоят из одной клетки. У этих микробов как хорошие вещи, поступающие внутрь, так и отходы, выходящие наружу, проникают через крошечные поры в клеточной мембране – барьере, который отделяет внутреннюю среду клетки от внешней. Эти промежутки эквивалентны дыре в нашей метафорической двери шкафа. Как и барахло из шкафа, вещество следует за его особым градиентом концентрации. Если снаружи микроба больше кислорода, чем внутри, то он диффундирует внутрь организма. Так же проникают внутрь питательные вещества, включая углеводы. А когда отходы внутри микроба накапливаются в большей концентрации, чем снаружи… Ну, вы поняли, что к чему16. Наконец, как и в примере со шкафом, некоторые вещества не могут проникнуть через клеточную мембрану. Поэтому она считается «полупроницаемой». Это свойство объясняет, почему клеточные структуры – органеллы (ядро и митохондрии, например) – остаются внутри клетки: в основном потому, что они не пролезают в поры17.

Теперь я знаю, что кое-кто из вас думает – или думал бы, если бы у него была центральная нервная система. «Некоторые из нас гораздо толще миллиметра, но без того хлама внутри вроде системы кровообращения, о которой вы только что упомянули. Так объясните же это, мистер Наука».

Ну, ладно, но только быстро.

Действительно, некоторые из вас – плоские черви, например – могут образовывать цепи длиной до 2,5 метра. И да, все они прекрасно обходятся без кровеносной системы – слишком прекрасно, если кого-то интересует мое мнение. Но, как и другие живые существа, около 20 тысяч видов, принадлежащих к команде плоских червей, живут припеваючи, потому что они приспособились к специфическим требованиям окружающей среды (так называемое давление отбора). У некоторых плоских червей это привело к возникновению ворсинчатых тел или длинных нитевидных форм. Точно так же, как грецкий орех имеет бо́льшую площадь поверхности, чем гладкий шарик того же размера, плоский червь с ворсинчатым телом имеет бо́льшую площадь поверхности для обмена газом, питательными веществами и отходами, чем гладкий плоский червь того же размера и формы. Распространим эту концепцию на пример шкафа: у двери в виде гармошки площадь поверхности будет больше, чем у плоской, так что в ней получится прорезать больше отверстий.

Но успех плоских червей – это нечто большее, чем просто форма. Примечательно, что среди них нет высокоактивных спринтеров. Ни быстрых пловцов, ни летунов. Их жизнь становится куда полнее, едва они прикрепляют изображающий голову сколекс к внутренней оболочке чьей-то толстой кишки. Другие коротают время, лежа на дне ручья или, может быть, в тени какого-нибудь влажного листового мусора. Это ленивое существование, и в результате таким домоседам нужно меньше энергии и кислорода, чтобы прожить день.

Но, ребята, не поймите меня неправильно. Хотя у вас нет кровеносной и дыхательной систем и многие из вас ведут паразитический образ жизни, заражают 300 миллионов человек в год и испражняются изо рта, пожалуйста, знайте, что ничто из этого не должно заставить вас чувствовать неловкость18. Просто это книга не о вас – так что поговорим как-нибудь в другой раз, хорошо?

Ладно. Они ушли? Круто.

Теперь для тех из вас, кто немного толще в середине, чем наши крошечные друзья, и кто может жить где-то еще, кроме чьего-то кишечника или озерного ила. Вы должны знать, что во время вашего эволюционного пути от одноклеточных организмов до навозных жуков, пиявок и страховых агентов возникали реальные проблемы. Пожалуй, самая серьезная из них состоит в том, что диффузия плохо работает на больших расстояниях. На самом деле она не годится почти ни для чего толще миллиметра. Как следствие, сама по себе диффузия крайне неэффективна для перемещения жизненно важных веществ и отходов жизнедеятельности в существах с массивными трехмерными телами, состоящими из слоев толщиной в сотни и даже тысячи клеток.

Вы можете спросить, как же тогда организмы эволюционировали, чтобы стать такими большими?

Вопрос сложный.

Для начала я должен пояснить: из-за небольшого размера и мягкотелости чрезвычайно древних организмов, участвовавших в эволюционном процессе, ископаемая летопись тех времен довольно скудна. Тем не менее ученые считают, что первые многоклеточные формы жизни возникли где-то между 770 и 850 миллионами лет до нашей эры (до н. э.)7. К 600 миллионам лет до н. э. эволюционировала новая линия многоклеточных, которая могла похвастаться не только радиальной (то есть круглой) формой, но и одинаковыми правой и левой сторонами. А у их эмбрионов появился третий слой, добавившийся к ранее двуслойной планировке тела. Более древняя структура состояла из внешней эктодермы, которая развивалась в такие элементы, как кожа, нервная ткань, рот и анус, и более глубоко расположенной энтодермы, которой суждено было стать внутренней оболочкой пищеварительной и дыхательной систем. Недавно возникший третий слой, мезодерма, сформировался между первыми двумя и стал источником новых строительных блоков для более крупных и сложных организмов. В конечном счете он даст начало мышцам, соединительным тканям, таким как хрящи или жир, структурным элементам, таким как кости, и отнюдь не простому набору тканей, которые станут известны как сердце.

Следующий уровень организации после, собственно, клетки в многоклеточном организме – это ткань. Каждый тип ткани состоит из различных видов клеток и субстанции под названием «внеклеточный матрикс», находящейся снаружи этих клеток и между ними. Клетки и матрикс в ткани действуют сообща и слаженно, выполняя определенную функцию – или функции – например, поддерживают тело, преодолевая силу тяжести, или помогают жидкостям перетекать с места на место. Всего существует четыре типа тканей: соединительная (например, кровь, кости и хрящи), эпителиальная (которая покрывает поверхности тела и выстилает полые органы и кровеносные сосуды), нервная ткань (нейроны и их опорные клетки – глия) и мышечная. Существуют три подтипа мышечной ткани: гладкие мышцы (не контролируемые произвольно), скелетные мышцы (произвольно контролируемые) и сердечная мышца, которая, к счастью, тоже не контролируется произвольно, что освобождает нас от необходимости помнить о том, что сердце должно биться.

Следующий организационный уровень тела – это орган. Каждый из ваших органов выполняет как минимум одну определенную функцию, а часто намного больше. Каждый орган состоит по крайней мере из двух различных типов тканей, а некоторые более крупные органы, включая сердце, могут состоять из всех четырех типов. Хотя сердце, почки и печень проще воспринимать как органы, в эту категорию попадают и кровеносные сосуды, поскольку они состоят из эпителиальной, соединительной и мышечной тканей и выполняют функцию транспортировки и распределения крови.

На вершине этой иерархии организации тела находятся системы органов, такие как кровеносная или пищеварительная. Они состоят из множества органов, задействованных в какой-то общей функции или функциях. В случае нашей кровеносной системы органы – это сердце, артерии, капилляры и вены, участвующие в транспортировке крови по всему телу.

Как и другие органы, кровеносные сосуды состоят из слоев клеток. Мышечные клетки, чаще называемые мышечными волокнами или миоцитами, образуют внутренний слой, ограниченный с обеих сторон эпителиальной тканью. Когда мышечные волокна сокращаются, жидкость внутри сосуда сжимается и движется – представьте, что ваши пальцы сжимают центр вытянутого шара с водой. Ученые полагают, что именно так вода и в конечном счете кровь начали переноситься с места на место внутри организмов, которые с течением эволюционного времени становились все больше.

Как развивался этот процесс? По одной из гипотез, примерно 500 милионов лет назад некоторые клетки, получившиеся из свежевозникшей мезодермы какого-то неизвестного организма, развили способность уменьшать свою длину – то есть сокращаться. Чтобы это произошло, в какой-то момент сократительные белки внутри клетки должны были выстроиться рядом друг с другом. Получив источник энергии, эти белки (подобные актину и миозину, обнаруженным в мышцах человека, в том числе в сердечной мышце) начали скользить мимо друг друга в противоположных направлениях. Если миллионы молекул делали это одновременно, то клетки, в которых они собрались, сокращались вместе с окружающими структурами. Затем, когда сократительные белки скользили обратно в прежние положения, клетки расслаблялись и возвращались к своей изначальной, досократительной длине.



Однако 500 милионов лет назад первые сократительные клетки были намного проще, чем наши мышечные клетки – миоциты (или миофибриллы). Кроме того, они не могли впервые возникнуть в кровеносных сосудах, поскольку ни крови, ни сосудов, которые ее транспортируют, тогда не существоало – хотя, безусловно, существовала вода, и с ее помощью вещества могли перемещаться в организм и из него. Даже сейчас сократительные белки, которые находятся внутри нормальных клеток организма, образуют жизненно важную часть внутренней транспортной системы клетки. Ученые полагают, что у некоторых доисторических существ клетки, содержащие древние сократительные белки, могли собираться в трубки, образуя примитивные системы «кровообращения». Эти сократительные трубки позволили перемещать воду и вещества, содержащиеся в ней, – и, намного позже, кровь – с места на место внутри все более крупных организмов. С появлением таких новшеств, как система кровообращения с сократительным органом, новые «типы на районе» относительно быстро19 разделялись на мириады форм, таких как сегментированные черви, моллюски и, через некоторое время, хордовые – подмножество которых, позвоночные, составляет подавляющее большинство читателей этой книги.

По пути эти существа, оснащенные подобными приспособлениями, превзошли многие организмы, у которых не было таких систем, и последние вымерли. Хотя и не все. Кораллы, медузы и гребневики отделились от остальных беспозвоночных до развития мезодермы, производящей мышцы. Хотя они не унаследовали мышечную ткань от своих предков, представители типа Cnidaria развили свои собственные эволюционные преимущества, такие как токсины и жалящие клетки, чтобы отгонять хищников. Благодаря этому они смогли жить припеваючи.

Системы кровообращения развивались не в вакууме – хоть и стали, безусловно, революционными. Кровеносные сосуды – это прекрасно, но важной причиной успеха организмов, обладающих системами кровообращения, было то, что они развили и другие системы органов, в частности дыхательную. Формируясь и функционируя в тандеме, эти две системы решили проблему перемещения большого количества газов в тело и из него – и в результате они позволили организмам, подобным хордовым, справиться с энергетическими затратами, связанными со все более сложными процессами и поведением.

Большинство дыхательных систем состоят в основном из аппаратов газообмена, таких как жабры или легкие. Их основная функция – облегчать поглощение кислорода, который необходим для жизнеобеспечения химических реакций, происходящих в организме. Эти реакции известны как метаболические процессы, а в совокупности они называются метаболизмом организма. Один из самых важных среди этих процессов – высвобождение полезной энергии из пищи, которую мы едим. По мере процесса пищеварения питательные вещества из еды расщепляются на более мелкие молекулы, такие как углеводы, жиры и белки. Благодаря процессу под названием клеточное дыхание, глюкоза из сахара (углевод) преобразуется в аденозинтрифосфат (АТФ), энергетическую валюту клетки. Мышечные волокна и другие клетки обладают способностью разрушать химические связи, удерживающие АТФ вместе, и эта энергия может потом использоваться как топливо для таких процессов, как восстановление, рост и сокращение мышц. Чрезвычайно важно, что химические реакции, участвующие в этом молекулярном распаде и высвобождении энергии, требуют кислорода. А обеспечивают его приток в организм как раз жабры и легкие.

7.От лат. tricuspidalis – «трехстворчатый». – Прим. перев.
8.Левый атриовентрикулярный клапан называется двустворчатым потому, что имеет, соответственно, две створки. Еще (чтобы окончательно запутаться) его называют митральным клапаном из-за предполагаемого сходства с митрой, церемониальным головным убором, который носили епископы. К счастью, для трехстворчатого клапана альтернативно-шляпных названий не придумали.
9.Сухожильные нити (лат.). – Прим. перев.
10.Свитый в волокна коллаген – самый распространенный белок в организме млекопитающих. Он обычно встречается в сухожилиях, связках и коже. Кроме того, коллаген придает костям некоторую гибкость.
11.«Усы» – это щетинки внутри ртов некоторых видов китов, устройство, фильтрующее пищу. Они состоят из кератина (вещества, из которого сделаны наши ногти и волосы) и улавливают криль после того, как кит заглатывает воду, а потом вытесняет ее изо рта.
12.В то время как рекорд погружения меченого синего кита составляет 315 м, кювьеров клюворыл (Ziphius cavirostris) удерживает рекорд глубины погружения млекопитающего – 2992 м!
13.Самое маленькое млекопитающее в мире – свиноносая летучая мышь (Craseonycteris thonglongyai), обитающая в Таиланде и Мьянме. Известная также под названием мышь-шмель, она весит всего два грамма.
14.В человеке среднего роста содержится около 5 литров крови. В состоянии покоя сердечный выброс – примерно 5 литров в минуту, поэтому среднее время, которое требуется нашей крови, чтобы пройти полный цикл тела (от сердца к легким, обратно к сердцу, наружу к телу и обратно к сердцу), составляет примерно одну минуту.
15.Голдбоген и его команда с помощью присосок прикрепили монитор сердечного ритма к синему киту и смогли следить за сердечным ритмом животного в течение почти 9 часов. Они не стремились определить, перенаправляется ли кровоток в определенные области тела во время резкого падения частоты сердечных сокращений, которое они регистрировали.
16.Описанное выше движение туда-сюда происходит практически без энергозатрат со стороны клетки, что делает диффузию «пассивным» процессом. Вещество также может перемещаться в любом направлении, если его поглощает клетка (как это происходит у таких организмов, как амебы) или упаковывает в крошечные мембранные мешочки, называемые везикулами, которые могут выбрасываться из клетки. Оба этих «активных» процесса требуют расхода энергии, как и перемещение вещества через мембрану против градиента его концентрации.
17.Кроме ограничений по размеру некоторые вещества обладают и другими физическими свойствами, препятствующими перемещению через мембрану. Примером этого может быть молекула с электрическим зарядом, который отталкивает ее, если она слишком близко подходит к мембране с аналогичным зарядом.
18.Хотя большинство из более чем 20 тысяч представителей рода плоских червей отрыгивают непереваренную пищу, у некоторых видов есть задний проход или даже несколько, расположенных на спине. Проблема для других видов заключается в том, что ленточные черви (цестоды) и особенно камбалообразные трематоды (дигенетические сосальщики) – это внутренние паразиты, вызывающие серьезные заболевания, такие как шистосомоз, у людей и их домашнего скота – в настоящее время в основном в Африке.
19.Ладно-ладно. Быстро – это в течение 100 миллионов лет или около того.
Yaş sınırı:
16+
Litres'teki yayın tarihi:
14 mart 2022
Çeviri tarihi:
2022
Yazıldığı tarih:
2021
Hacim:
314 s. 41 illüstrasyon
ISBN:
978-5-389-20984-8
İndirme biçimi:

Bu kitabı okuyanlar şunları da okudu