Kitabı oku: «Análisis de fallas de estructuras y elementos mecánicos», sayfa 11
3.6.1 Mecanismos de la fatiga en metales
En los metales policristalinos las grietas de fatiga se pueden nuclear, entre otros, a partir de los siguientes mecanismos: (a) por movimiento acumulativo de las dislocaciones en planos y direcciones de deslizamiento, de los granos ubicados en las zonas con superficie libre más esforzadas de la pieza. Este movimiento de dislocaciones genera en la superficie intrusiones y extrusiones, que a la larga se convierten en concentradores de esfuerzo, lo cual, aunado al endurecimiento por deformación acumulado, desencadenará descohesión y por lo tanto una microgrieta; (b) por movimiento acumulativo de dislocaciones contra límites de grano, partículas de segunda fase o maclas, generando microgrietas; (c) por fractura mediante clivaje de inclusiones o partículas de segunda fase, que generan las microgrietas iniciales (figura 3.44). Ya que los tres mecanismos requieren que halla deformación plástica previa localizada, es de esperarse que las zonas de una pieza más propensas a agrietarse por fatiga sean aquellas que mayor concentración de deformación plástica microestructural desarrollen en servicio.
Figura 3.44 Ejemplos de mecanismos de nucleación de grietas de fatiga
Nota. Formación de intrusiones y extrusiones por deslizamiento dentro de un grano en la superficie libre de la pieza (izquierda); apilamiento de dislocaciones en límite de grano interior de la pieza (derecha); clivaje de partículas de segunda fase (inferior).
Fuente: elaboración propia.
Las zonas de las piezas donde típicamente se nuclean las grietas, a partir de los mecanismos antes descritos, son, a saber: (a) regiones de daño mecánico por deformación superficial (ludimiento), a lo que comúnmente se le denomina fatiga por ludimiento o por vibrocorrosión; (b) concentradores de esfuerzo geométricos (escalones, filetes de rosca, agujeros, etcéterea); (c) concentradores de esfuerzo inducidos en manufactura (marcas de mecanizado, poros, rechupes, labios de forja, etcétera); (d) concentradores de esfuerzo microestructurales (microrechupes, inclusiones, etcétera); (e) concentradores de esfuerzo generados en servicio (golpes, desgaste abrasivo, desgaste adhesivo, corrosión, arcos eléctricos, etcétera); (f) interfaz entre capas de endurecimiento superficial y núcleo (figuras 3.45 y 3.46). También se puede tener nucleación de grietas subsuperficiales bajo la acción de esfuerzos de contacto. De ello se trata en el numeral 4.2.3.
Figura 3.45 Fractura por fatiga
Nota. Fractura por fatiga a flexión de un pin de giro de una retroexcavadora, nucleada en una zona con daño superficial por deformación mediante ludimiento (fotos superiores), a esto se le conoce como fatiga por ludimiento; fractura por fatiga a flexión nucleada en el radio de acordonamiento de un muñón de cigüeñal, es decir, en un concentrador geométrico de esfuerzos (fotos centrales); fractura por fatiga a torsión de un resorte helicoidal, nucleada en un defecto superficial de laminación, que es un concentrador de esfuerzo inducido en manufactura (fotos inferiores). Las flechas amarillas indican los orígenes del agrietamiento y las negras los sentidos de propagación.
Fuente: elaboración propia.
Figura 3.45 Fractura por fatiga (continuación)
Nota. Fractura por fatiga a flexión de una hoja de ballesta, nucleada desde una inclusión no metálica subsuperficial, es decir, desde un concentrador de esfuerzo microestructural (fotos superiores); fractura por corrosión fatiga a flexión de un eje, nucleada desde una picadura de corrosión generada en servicio (fotos centrales); fractura por fatiga a torsión de un eje de acero con capa de temple superficial, donde la fatiga se originó en la interfaz entre la capa y el núcleo no endurecido (fotos inferiores).
Fuente: elaboración propia.
Después de nucleadas las grietas, si el ΔKaplicado es mayor que el ΔKumbral, inicia la fase de propagación, es decir, si el tamaño de la grieta y el esfuerzo aplicado en cada ciclo son lo suficientemente grandes. Si las grietas vienen desde el proceso de fabricación, en servicio entrarán directamente a la fase de propagación si cumplen con el criterio mencionado.
Figura 3.46 Esquema que ilustra la condición para que se originen grietas de fatiga en la interfaz entre la capa endurecida y el núcleo blando de una pieza
Nota. Se requiere que la carga de flexión o torsión iguale o supere a la resistencia a la fatiga en la zona de transición.
Fuente: elaboración propia.
La fase de propagación de grietas por fatiga en metales se puede dar a través de alguno de los siguientes mecanismos: (a) fatiga cristalográfica, donde las grietas se propagan a través de los granos, siguiendo planos cristalinos específicos; aquí el crecimiento de la grieta es precedido por deformación plástica intragranular en el frente de grieta; (b) crecimiento transgranular perpendicular al esfuerzo normal máximo; en este caso no hay dirección cristalográfica específica de crecimiento (lo que lo diferencia de la fatiga cristalográfica), y el crecimiento en cada ciclo se encuentra precedido de deformación plástica intragranular; (c) crecimiento cíclico intergranular, cuando se da un avance cíclico de las grietas bordeando los granos; (d) clivaje cíclico, donde las grietas crecen intragranularmente en los planos de clivaje; (e) crecimiento mediante formación y coalescencia de microvacíos; de igual manera a los anteriores, se da de manera cíclica (figura 3.47).
En algunos metales de alta ductilidad, se pueden formar estriaciones de fatiga cuando se tenga fatiga cristalográfica o crecimiento transgranular (figura 3.47, fotos superior y central a la izquierda). En la fatiga transgranular es posible que se forme un patrón de marcas radiales que permite conocer la dirección de crecimiento de las grietas (figura 3.47, superior derecha). Cuando se tenga clivaje cíclico, las marcas de río permitirán conocer la dirección de crecimiento (figura 3.47, inferior izquierda). En las fatigas intergranular y por formación y coalescencia de microvacíos, no es tan común encontrar marcas de dirección de propagación o de posición del frente de grieta a nivel microscópico, por lo que se deberá recurrir a la inspección macro y otras fuentes de información, como tipo y sentido de aplicación de la carga, para conocer las direcciones de propagación.
Figura 3.47 Mecanismos de la fatiga
Nota. Fatiga cristalográfica en duraluminio 7075 T6 (superior izquierda), donde dentro de cada grano la trayectoria de las grietas sigue una familia de planos específicos; fatiga transgranular en acero AISI 5160 bonificado con 40 RC (superior derecha). Nótese que la textura no está tan influenciada por los granos como en el caso de la fatiga cristalográfica; (c) fatiga transgranular de acero de bajo carbono donde se tiene presencia de estrías (centro izquierda); (d) fatiga intergranular en acero AISI 5160 bonificado con 50 RC (centro derecha); grano clivado por fatiga en acero AISI 1040 recocido (inferior izquierda); fatiga de bajo ciclaje por formación y coalescencia de microvacíos en acero recocido AISI 1040 (inferior derecha). Las flechas amarillas indican el sentido de propagación de las grietas.
Fuente: elaboración propia.
Los mecanismos de propagación que presentan mayores grados de deformación plástica en cabeza de grieta son, a saber: crecimiento por formación y coalescencia de microvacíos, crecimiento transgranular perpendicular al esfuerzo normal máximo y crecimiento por fatiga cristalográfica. Los que menor grado de deformación plástica asociada tienen son: el crecimiento por clivaje cíclico y el crecimiento cíclico intergranular. Todos estos mecanismos de crecimiento siguen en promedio la perpendicular al máximo esfuerzo normal local.
Para explicar el crecimiento de grieta en la fatiga cristalográfica o en la transgranular, se puede recurrir al modelo del deslizamiento cruzado, que se esquematiza en la figura 3.48. En el caso de las fatigas por clivaje e intergranular, el crecimiento de grieta se adjudica a la descohesión (ruptura de enlaces). Para el mecanismo de formación y coalescencia de microvacíos, se sigue la misma lógica del crecimiento de grieta, descrito cuando se trató en la fractura súbita dúctil.
Figura 3.48 Modelo del avance de grieta a través del deslizamiento cruzado, aplicable a la fatiga cristalográfica o a la transgranular
Nota. (a) Grieta original, (b) primer deslizamiento en frente de grieta bajo tracción, (c) segundo deslizamiento cruzado en frente de grieta bajo tracción, (d) abombamiento de la grieta después del ciclo de tracción, (e) primer deslizamiento bajo compresión o descarga, (f) segundo deslizamiento cruzado bajo compresión o descarga. En este modelo tanto el ciclo de tracción como el de compresión o descarga producen crecimiento efectivo de la grieta [11].
En general, en la fatiga de alto ciclaje, los aceros ferríticos y martensíticos tienden a propagar las grietas de fatiga, mediante el crecimiento transgranular en las etapas I, II y III (figura 3.43). Algunas veces, en la etapa I hay participación del crecimiento intergranular cíclico o del clivaje cíclico, y en la etapa III participación también de la formación y coalescencia cíclica de microvacíos. En estos materiales no es tan común la participación de la fatiga cristalográfica, debido a la alta energía de apilamiento del material que favorece los deslizamientos cruzados, lo que facilita el crecimiento transgranular (asociado a la estructura CC). Si se presenta la fatiga cristalográfica (generalmente en aceros de bajo carbono), aparecerá especialmente en la etapa I de propagación, notándose como un zigzagueo de la trayectoria cerca al origen y a 45o, abarcando de 2 a 5 granos de longitud (figura 3.59, derecha). El crecimiento intergranular cíclico puede favorecerse por la presencia de fenómenos de fragilización en límite grano, como los que se describieron en la fractura súbita frágil de este tipo; el crecimiento por clivaje cíclico se ve favorecido por temperaturas bajas; el crecimiento por formación de microvacíos cíclico se acentúa a bajas durezas y especialmente al final de la etapa II y en la etapa III de propagación.
En aceros austeníticos y duraluminios predomina también el crecimiento transgranular, sin embargo, en la etapa I de propagación también es importante la participación de la fatiga cristalográfica. En varias de las aleaciones base cobalto y base níquel, es común que se tenga fatiga cristalográfica tanto en la etapa I como en la II de propagación, debido a que estos materiales tienen baja energía de apilamiento, lo que no favorece los deslizamientos cruzados intragranulares.
Lo mencionado en los párrafos anteriores respecto a la nucleación y la propagación de las grietas, aplica para la fatiga de alto ciclaje. En el caso de la fatiga de bajo ciclaje, los principales mecanismos de nucleación y propagación de grietas son: (a) formación y coalescencia de microvacíos intragranulares, (b) la descohesión intergranular y (c) el clivaje de granos individuales. La ocurrencia de un mecanismo u otro dependerá de la ductilidad del material.
La vida a fatiga de bajo ciclaje no resulta muy influenciada por el tamaño de grano de un metal, mientras que la de alto ciclaje sí; se nota que a menor tamaño de grano la resistencia y la vida a fatiga aumentan. Esto se debe a que el tamaño de grano fino al restringir más la deformación plástica, retarda el desarrollo del daño que precede al agrietamiento.
Las aleaciones metálicas endurecibles por deformación plástica muestran un incremento en la resistencia a fatiga con el porcentaje de deformación; pero aleaciones endurecicles por temple-revenido o temple-envejecimiento no muestran un efecto tan benéfico del endurecimiento por deformación.
La fractura final de la pieza fatigada, dependiendo del tamaño de la zona remanente y de la tenacidad de fractura del material, podrá ser súbita dúctil, súbita frágil o súbita mixta; en estas zonas se presentan los mecanismos, marcas, texturas y orientaciones de fractura descritos en el numeral 3.5.
En las fatigas mecánicas (solo dependientes de los ciclos de esfuerzo), no existe una influencia muy marcada de la frecuencia de la onda de esfuerzo en la resistencia a fatiga o en la cinética de propagación de las grietas [12]; esto a los valores típicos de aplicación de frecuencias en maquinaria (500 a 10.000 ciclos por minuto). Sin embargo, a muy bajas frecuencias la resistencia a la fatiga puede disminuir, ya que hay mayor tiempo para que la pieza se deforme plásticamente por cada ciclo, y a muy altas frecuencias puede aumentar marcadamente la resistencia, debido a que, por el corto tiempo de cada ciclo, no se alcanza a generar suficiente daño por deformación plástica.
3.6.2 Fractografía de las fracturas por fatiga en metales
La formación de una fractura por fatiga en metales se presenta si: (1) hay una carga variable en el tiempo; (2) el rango de intensidad de esfuerzo aplicado supera al rango de intensidad de esfuerzos umbral del material (ΔKaplicado > ΔKumbral), lo cual se relaciona con que el pico de la onda de esfuerzo aplicada (σmáximo) sea mayor a la resistencia límite de fatiga corregida de la pieza (σmáximo > σF AT C), para la razón de carga de la onda de esfuerzo aplicada (R). Si las condiciones anteriores no se cumplen, ello implica que las microgrietas formadas en la nucleación no se propagarán, es decir, tenderán a permanecer en condición estable. La vida a fatiga de una pieza se verá seriamente acortada si hay daño mecánico previo por deformación superficial o concentradores severos de esfuerzo: (a) en la geometría de la pieza, (b) inducidos por el proceso de fabricación, (c) de tipo microestructural o (d) generados en servicio, por golpes, desgaste o corrosión.
A simple vista, las fracturas por fatiga de alto ciclaje de elementos mecánicos no mostrarán deformación plástica o distorsión notable de las piezas, en su conjunto o cerca de las zonas de fractura; sin embargo, en fracturas por fatiga de bajo ciclaje, ello sí podrá estar presente si se trata de un material dúctil (figuras 3.49 y 3.50, imágenes superiores izquierdas). No obstante lo anterior, en las fatigas de alto ciclaje, si se presenta fractura final súbita dúctil, es posible que en dicha zona esté presente la deformación macroscópica de la pieza.
En general, las superficies de las fracturas por fatiga de alto ciclaje se caracterizan por presentar dos zonas claramente diferenciadas: (1) zona de propagación estable de grietas en servicio, en la cual a simple vista, con lupas o estereoscopio óptico, se encontrará una textura tersa o granular; (2) zona de fractura final, donde la pieza agrietada no pudo seguir soportando la carga, y por lo tanto, ocurrió una fractura de manera súbita (crecimiento inestable de grietas) (figura 3.49, superior derecha).
Bajo inspección visual a ojo desnudo, con lupas o estereoscopio, la textura predominante en las superficies de propagación estable de grieta por fatiga de alto ciclaje de metales será la tersa (figura 3.51, superior izquierda). La textura tersa es consecuencia del predominio del mecanismo de fatiga transgranular. Si el mecanismo predominante es la fatiga cristalográfica, la textura visible será una combinación de la tersa y la granular, ya que dentro de cada grano habrá planos preferentes de propagación de las grietas de fatiga (figura 3.51, superior derecha). Cuando predominen los mecanismos de clivaje o agrietamiento intergranular, la textura predominante será la granular (figura 3.51, central izquierda). En la fatiga de bajo ciclaje, donde predomine el mecanismo de formación y coalescencia de microvacíos, la textura encontrada será la fibrosa (figura 3.51, central derecha). Todas estas texturas podrán presentar frotamiento total o parcial, es decir, daño de las superficies de fatiga por roce entre las dos caras de grieta (figura 3.51, inferior), lo cual se favorece cuando halla inversión total de carga (tracción-compresión) o cuando se combinen los modos de carga I y II o I y III.
El límite entre la zona de propagación estable de grieta y la zona de fractura final es una marca de playa, cuya geometría indica la forma que tenía el frente de grieta, inmediatamente antes de presentarse la fractura final (figura 3.49, superior derecha). Esta marca se forma por el contraste visual que se produce entre las texturas de la zona de propagación estable y las de la zona de fractura final.
Figura 3.49 Fracturas por fatiga de alto ciclaje
Nota. Muñón de cigüeñal fatigado a torsión, donde se puede notar que no hay deformación plástica de la pieza (superior izquierda); zonas típicas de una superficie de fractura por fatiga (superior derecha). Nótese que no hay marcas de playa intermedias; fractura por corrosión fatiga a flexión de un eje, donde hay una marca de playa intermedia (central izquierda); fractura por fatiga a flexión de un cigüeñal, donde se presentaron varias marcas de playa intermedias (central derecha); orígenes múltiples de fatiga separados por marcas ratchet (inferior izquierda); presencia de marcas de río en superficie de fractura por fatiga de un cigüeñal. Nótese que la aparición de las marcas coincide con un cambio en la orientación de la superficie de fractura (inferior derecha). Las flechas amarillas indican la dirección del crecimiento de las grietas.
Fuente: elaboración propia.
Figura 3.50 Fracturas por fatiga de bajo ciclaje
Nota. Tornillo de acero martensítico fatigado a bajo ciclaje en 32 ciclos, aplicando un 95 % del esfuerzo último. Nótese que hay deformación del elemento alrededor de la zona de fractura (superior izquierda); superficie de fractura por fatiga del tornillo, donde se nota su textura fibrosa (superior derecha); superficie de fractura por fatiga de bajo ciclaje, de un elemento estructural hecho en duraluminio 7075 T6, donde hay textura fibrosa y presencia de marcas de playa (inferior). Las flechas amarillas indican la dirección del crecimiento de las grietas.
Fuente: elaboración propia.
Lo más común en piezas mecánicas que fallan por fatiga es que tengan varias marcas de playa en la zona de propagación estable de grietas, las cuales se forman generalmente por: (1) corrosión u oxidación en el frente de grieta, producto de la acción del aire o del lubricante de la máquina durante un periodo de detención de la pieza; (2) cambios en el rango de intensidad de esfuerzos aplicados, que producen cambios en la cinética de crecimiento y en la rugosidad; (3) cambios en el estado de esfuerzos que originen variaciones en la orientación de la superficie de grieta; (4) cambios en la frecuencia de los ciclos de carga aplicados, que llevan a variaciones en la cinética del crecimiento. En las imágenes superior derecha, central izquierda y central derecha de la figura 3.49, se puede ver la apariencia que tiene una fractura por fatiga sin marcas de playa intermedias, la de una fractura con una marca de playa intermedia y la de una fractura con varias marcas de playa intermedias, respectivamente.
Figura 3.51 Texturas en las zonas de propagación estable de grietas por fatiga
Nota. Tersa en fatiga transgranular de acero bonificado 8640 con 40 RC (superior izquierda); combinación de tersa y granular en fatiga cristalográfica de duraluminio 7075 T6 (superior derecha); granular en fatiga intergranular de acero 5160 bonificado a 50 RC (central izquierda); fibrosa en fatiga de bajo ciclaje por formación y coalescencia de microvacíos, en duraluminio 7075 T6 (central derecha); tersa con frotamiento por roce entre las caras de grieta, en acero inoxidable AISI 410 (inferior). Las flechas amarillas indican la dirección de crecimiento de las grietas.
Fuente: elaboración propia.
En el caso de una fractura por fatiga en la cual solo se encuentre la marca de playa, que separa las zonas de propagación estable y de fractura final (figura 3.49, superior derecha), se puede afirmar que las condiciones ambientales, de nivel de esfuerzos y de orientación de estos, no cambiaron durante todo el proceso de crecimiento en servicio de la grieta de fatiga, es decir, esta pieza probablemente no tuvo detenciones prolongadas durante su funcionamiento (operación continua a ciclos de carga constantes).
El eje de la figura 3.49 (central izquierda) corresponde a un eje perteneciente a una bomba de extracción de crudo en pozo, equipo que operó en varios pozos diferentes antes de la falla. Su superficie de propagación estable mostró claramente una marca de playa intermedia, con lo cual se pudo deducir que el eje nucleó e inició su agrietamiento en el penúltimo pozo en que operó, ya que dicha marca de playa probablemente se formó por acción corrosiva, mientras el eje estuvo almacenado antes de ingresar al último pozo.
El cigüeñal de la figura 3.49 (central derecha) trabajó en el motor de un helicóptero; en este caso se encontraron quince marcas de playa claramente definidas, lo que para el helicóptero implicó que desde al menos quince vuelos anteriores, el cigüeñal ya se encontrara agrietado. Además, las marcas de playa se formaron por la acción corrosiva del aceite lubricante del motor durante los largos periodos detención del helicóptero.
En las zonas de origen de los agrietamientos por fatiga, será común encontrar las marcas Ratchet, cada una de las cuales separa dos grietas de fatiga independientes. Es importante notar que los orígenes de los agrietamientos por fatiga no están en las marcas Ratchet, sino entre ellas (figura 3.49, inferior izquierda). Si no se encuentran marcas Ratchet en la zona de origen de agrietamiento, ello indica que se tuvo un solo origen de grieta de fatiga (figura 3.49, superior derecha y central izquierda).
Marcas radiales y de río también pueden estar presentes en las zonas de propagación estable de las grietas, y generalmente están asociadas a cambios en el estado de esfuerzos, que generan bifurcaciones y reorientaciones de las superficies de fatiga (figura 3.49, inferior derecha). Estas marcas tenderán a aparecer en piezas grandes, o de geometría compleja, o cerca de la transición entre las zonas de propagación estable y de fractura final, es decir, en la etapa III de propagación.
Como regla general, en las superficies de fractura por fatiga de alto ciclaje se encontrará que la rugosidad irá en continuo incremento, desde el origen hacia la zona de fractura final (figura 3.49, inferior derecha), lo cual ayuda a establecer las regiones de origen de los agrietamientos, si no se tienen marcas Ratchet, de río, radiales o de playa que lo permitan. De igual manera, las zonas de origen al ser más antiguas, es posible que presenten coloraciones oscuras producto de la corrosión u oxidación, mientras que las últimas zonas en formarse durante la propagación serán de un brillo metálico más acentuado (figura 3.56, central derecha).
Las superficies de fractura por fatiga de bajo ciclaje tienden a no mostrar un límite claro entre la zona de propagación estable de grieta en servicio y la zona de fractura final. Sus texturas tienden a ser fibrosas en el caso de materiales dúctiles (figura 3.50, superior derecha) y granulares para materiales frágiles. En las texturas fibrosas se podrán encontrar marcas de playa (figura 3.50, inferior), y en menor medida marcas radiales o de río. Debido a estas características, a veces es difícil distinguir entre una fractura súbita y una por fatiga de bajo ciclaje.
Figura 3.52 Tipos de fracturas finales en fatiga
Nota. Fractura súbita frágil con textura granular (superior izquierda); fractura súbita dúctil con textura fibrosa (superior derecha); fractura súbita dúctil formando labio de corte con textura fibrosa (inferior). Se pueden tener zonas de crecimiento estable en servicio, pequeñas o grandes respecto a la zona de fractura final. Las flechas amarillas indican la dirección del agrietamiento.
Fuente: elaboración propia.
El tamaño relativo entre la zona de propagación estable de grieta y la zona de fractura final puede dar indicios sobre el nivel del esfuerzo experimentado respecto a la resistencia de la pieza, si se tiene certeza de que durante la propagación de grieta el nivel de carga se mantuvo aproximadamente igual. Una zona de propagación estable pequeña (figura 3.52, superior izquierda) sugiere que la carga de fatiga era muy elevada respecto a la resistencia de la pieza, ya que con pocos ciclos se generó fractura final, mientras que una zona de propagación estable grande (figura 3.52, superior derecha), sugiere un nivel de carga de fatiga baja. En este último caso surge una pregunta obvia: ¿si la carga de fatiga era baja, por qué se fatigó la pieza? La respuesta no es sencilla, pero es común encontrar que en los casos en que se presenta esta situación, ello se debe a que en la zona de inicio del agrietamiento había algún concentrador de esfuerzo severo o un daño mecánico previo. Esto facilita la nucleación del agrietamiento, y el rango de esfuerzos aplicado, aunque es bajo, es de todas maneras suficiente para propagar las grietas. Además de lo anterior, se debe tener presente que el tamaño relativo entre las dos zonas, no solo depende de la solicitación, sino también de la tenacidad de fractura de la pieza.
En la figura 3.53 se resume, a manera de ejemplo, para ejes sometidos a flexión unidireccional, la influencia que el nivel de esfuerzo y su concentrador tienen en: (a) el tamaño relativo entre la zona de propagación estable y la zona de fractura final; (b) el número de orígenes del agrietamiento y, por lo tanto, de marcas Ratchet. En esta figura también se ilustra que cerca de cada origen de grieta, las marcas de playa tienden a ser elípticas o circulares, y el origen se encuentra hacia la zona cóncava de la marca. Una vez las grietas se unen para formar un solo frente de grieta, este puede generar marcas de playa ya no tan cóncavas, rectas o incluso convexas; cerca de la zona de fractura final, las marcas de playa generadas pueden ahora ser convexas respecto a los orígenes, o lo mismo cóncavas respecto a la fractura final.
Figura 3.53 Influencia del rango de esfuerzos aplicados y el nivel de concentración de esfuerzos presente en el tamaño de la zona de propagación de grietas en servicio y el número de orígenes de fatiga para un eje sometido a flexión unidireccional
Fuente: elaboración propia.
Además de la posibilidad de tener varios orígenes de grieta en una superficie de fatiga, también es probable que se tengan varias grietas paralelas de fatiga, es decir, un agrietamiento múltiple (figura 3.54). Esto se favorece cuando se tiene un rango de esfuerzos aplicados alto y una zona amplia de la pieza sometida a este, es decir, no hay una zona especialmente cargada, sino varias (ausencia de concentradores de esfuerzo o presencia de varios que generan el mismo nivel de concentración).
Cuando no exista certeza de que el valor de la carga de fatiga se mantuvo constante durante el proceso de agrietamiento, no es tan fácil sacar conclusiones sobre el nivel de carga que experimentó la pieza, a partir del tamaño relativo de las zonas de propagación estable y de fractura final, ya que en muchos diseños mecánicos (por ejemplo, en puentes metálicos), es común que al agrietarse por fatiga un elemento estructural, otro denominado redundante asuma la carga que el agrietado está dejando de soportar, es decir, el elemento producto de su agrietamiento pierde carga. En este caso tendremos una zona de propagación estable grande y de fractura final pequeña, pero no por esto debemos asumir que la carga de fatiga era nominalmente baja, ya que de entrada sabemos que durante el origen del agrietamiento la carga era probablemente alta.
Figura 3.54 Agrietamiento múltiple de eje en fatiga bajo torsión (las grietas están resaltadas con partículas magnéticas)
Nota. Obsérvese el patrón en forma de “X” que tienen las grietas cerca de su origen.
Fuente: elaboración propia.
Dependiendo del tipo de material (dúctil o frágil), del tamaño y la geometría de la pieza, y del tamaño relativo de la zona de fractura final, se podrá encontrar una fractura final súbita frágil (figura 3.52, superior izquierda) o súbita dúctil (tipo fibrosa o tipo labio de corte) (figura 3.52, superior derecha e inferior).
La trayectoria de las grietas de fatiga durante su propagación es similar a la de las fracturas súbitas frágiles, donde en general se sigue una trayectoria perpendicular al máximo esfuerzo de tracción local generado por los diferentes modos de carga; sin embargo, existen dos particularidades: (a) para el caso de tracción, en piezas delgadas, materiales tenaces y altas velocidades de propagación (etapa III), o en fatiga de bajo ciclaje, se podrá tener una trayectoria de propagación a 45o respecto al normal máximo, donde dicha propagación se dará bajo la acción combinada de un esfuerzo normal y el cortante máximo; (b) para el caso de torsión, es posible que las grietas durante su nucleación y las fases iniciales del crecimiento (etapa I) sean colineales con el cortante máximo, haciendo transición posteriormente a la perpendicular al esfuerzo de tracción (figuras 3.55 y 3.56, ver también la figura 3.24). El caso (b) descrito en este párrafo se ve favorecido si hay, por ejemplo, inclusiones no metálicas orientadas con el cortante máximo, o si además del torsor hay esfuerzos de contacto superficial por deslizamiento.