Sadece LitRes`te okuyun

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «Invention: The Master-key to Progress», sayfa 15

Yazı tipi:

Thus, Rome did not fall because of the barbarians, but because of herself. She fell because her people allowed the Machine which she had built up, in spite of the barbarians outside, at so much cost of labor and blood, to become so weak that it could no longer protect itself. Can this happen to our Machine? Yes, and it will happen as surely as effect follows after cause, unless means be taken to see that men are trained to care for the Machine more carefully than they are trained now. In no country is there any serious effort made to train men to operate the Machine of Government, except those parts of the Machine that are called the army and the navy: – though some tremendous efforts are made in private life to train men to handle corporations and business enterprises, and to learn all that can be learned in medicine, engineering, the Law and all the "learned professions." And even the efforts made to train officers to handle armies and navies are in great part neutralized by placing men at the head of those armies and navies who are not trained in the slightest.

The Roman Machine fell with a crash that was proportional to the magnitude of the Machine. The Machine of today is much larger and heavier than the Roman. If it falls, as it may, the crash will be proportionally greater. What will follow, the mind recoils from contemplating.

CHAPTER X
CERTAIN IMPORTANT CREATIONS OF INVENTION, AND THEIR BENEFICENT INFLUENCE

In 1843 Charles Thurber invented the typewriter. Few inventions are more typical. In 1843, the conditions of life were such that the first stage in inventing the typewriter must have been the conception of an extremely brilliant and original idea. After that, the difficulties of embodying the idea in a concrete form must have been very great; for it was not until about 1875 that instruments of practical usefulness were in general use. Since then, typewriters have penetrated into virtually every office in the civilized world.

Though the typewriter is a very simple apparatus in both principle and construction, yet few machines stand out more clearly as great inventions. Few inventions also have exerted a greater influence – though the influence of the typewriter has been auxiliary, rather than dominant; it has merely enabled a greater amount of business to be transacted than could be transacted before. If anyone will go into any business office whatever, and note the amount of work performed in that office by means of one typewriter that could not be performed without it, and will then multiply that amount by the number of typewriters in the world, he will come to a confused but startling realization of the amount of executive work that is being done in a single day through the agency of the typewriter, that otherwise would not be done. If he will then go a step further, and multiply the number of days that have gone by since the typewriter was first employed, by one-half, or even one-tenth, of the amount accomplished by means of all the typewriters in a single day, he may then be able to appreciate in a measure the enormous influence on progress which the invention of the typewriter has already had. One would not make an exaggerated statement if he should declare that if the typewriter had not been invented, every great business organization in the world today would be much smaller than it is; the great industries would not exist in their present vastness; and all the arts of manufacture, transportation and navigation would be far behind the stage they now have reached.

The electric telegraph was patented by Morse in 1837, but the first telegram was not sent till 1844, along a wire stretched from Washington to Baltimore. It is said that the first official message was "What hath God wrought!" This message shows a realization of a fact which some people fail to realize: the people who say, "God made the country, but man made the city." The message showed a realization that God inspires the thoughts of men, as truly as He provides them with things to eat. It is inconceivable that it was intended to call attention to the fact that God wrought the wire along which the message ran, or the wooden poles that carried the wire, or the material zinc and copper of the battery. The only new thing evidenced in the telegraph so far as anyone could know, was the invention itself. God had wrought that through the agency of Morse. It is a known fact that no human mind, no matter how fine it may be, or how brilliant and correct its imagination, can have any images or ideas that are not based in some way on the evidence of the senses. We can imagine things, and even create things, that have never existed before; but those things must be composed of parts whose existence we know of through the evidence of our senses. So Morse, although he invented a thing that was wholly new, although he created something – did not create any of the parts that composed it. He used such well-known things as wire, iron, zinc and copper. Even in the creation of man, the Almighty himself used common materials: "And the Lord God formed man of the dust of the ground, and breathed into his nostrils the breath of life: and man became a living soul." (Genesis, Chapter II.)

If the Lord God breathed the breath of life into Adam, He inspired him according to the original meaning of the word inspire. If He inspired Morse with the conception of the electric telegraph, He inspired him according to the modern meaning of the word, which is not very different from the original meaning, and which is not at all different from the meaning according to which He is said to have inspired the prophets of old.

To bring before us clearly the whole influence of the telegraph on history would require a book devoted to no other subject; yet the telegraph belongs in the same class with the typewriter, in the sense that its main office is to assist the transaction of business. The telegraph does not of itself produce results. It is not in the class with the fist-hammer, or the weaving machine, or the gun, or the steam engine, or the electric light, or chloroform, or the telescope, or the discovery of America. It owes its reputation largely to the spectacular way in which it first appeared, and to the seeming wonderfulness of its success. Yet the telegraph seems no more wonderful than the typewriter, to a person who knows even a little of electricity; and the task of making it practicable was much easier. A very simple and crude apparatus sufficed for the telegraph: but a highly perfect mechanism was needed for the typewriter.

It is probably true, however, that the telegraph has had a greater influence on history than the typewriter, though modern civilization would not be even approximately what it is, if either had not been invented. And if by any combination of circumstances, either one should now be taken from us, the whole Machine would be thrown into inextricable confusion.

It may be objected that if Morse had not invented the telegraph, or if any inventor whoever had not invented whatever thing he did invent, some other man would have done so; and that therefore those inventors do not deserve to be placed in any especial niche of honor. There would be considerable reasonableness in such an objection, as is evidenced by the fact that in many cases two or more men have invented the same thing at about the same time. It may be pointed out, however, that while this has often happened in regard to improvements on basic inventions, it has not happened very often in regard to the basic inventions themselves; and also that, even if we include all the inventors the world has ever heard of, we find that there have been surprisingly few. Therefore, it really makes little difference to the race as a whole whether Smith or Jones made a certain invention, or whether Smith would have made it, if Jones had not made it. "The man who delivers the goods," receives, and as a rule deservedly, the recognition of mankind. Furthermore, this book, as has been stated, is not concerned mainly with inventors, but with inventions.

In 1844, the use of nitrous oxide gas (laughing gas) as an anæsthetic was introduced by Dr. Wells. It cannot be said that this invention has had any direct influence on history itself, though it has had a great deal of influence on the history of some individuals. It contributed a new and distinct part to the Machine, however, and certainly helped to ameliorate the conditions of living. Besides, it seems to be one of the lessons of history that most new and distinct creations, even if no use has been found for them for a long while, have ultimately found a field of usefulness. Furthermore, every new and useful thing, like nitrous oxide gas, attracts the attention of men to the advantages that the study of physical sciences and the prosecution of invention offer, and gives inspiration for further study and endeavor.

In the same year, Léon Foucault invented the first practical electric arc-light. Davy had made the basic invention of the Voltaic arc in 1808; but his invention was in the class just spoken of, in that it was not utilized for many years. Even the arc-light that Foucault produced in 1844 was not utilized then. In both cases, the cause of slowness of utilization did not rest so much in the invention as in the stage of civilization at the time. The world was not yet ready for the arc-light. In fact, it did not become ready, and it could not become ready, to use the arc-light in real service, until a cheaper means of producing electric current had been invented. This did not happen until the dynamo-electric machine had been invented and had been brought to such a point of practical development that it could supply electric current, not only adequately and economically, but reliably. A necessary step toward the utilization of the arc-light was made in 1845, however, by Thomas Wright, who invented a means whereby the carbons could be kept automatically at the correct distance apart for maintaining a continuous and uniform light.

In 1845, Robert Hoe made an important contribution in his double-cylinder printing press. In the same year, R. W. Thompson invented the pneumatic tire. This invention belongs distinctly in the class just spoken of, for the pneumatic tire did not come into general use until the bicycle did, about 1890. It may be asked if there is any use in inventing appliances long before they are needed. So far as the inventor is then concerned – no: so far as the public is eventually concerned, yes. All inventions made and patented are described and illustrated in the Patent Office Gazette; and many of them are described and illustrated in magazines and newspapers, even if they are not used in actual practice. These records form part of the general knowledge of mankind, just as much as do the facts of geography and history and arithmetic; and they can be drawn upon by investigators and inventors, and made to assist them in their work.

In 1846, an invention was made by Elias Howe, that does not belong at all in the same category as that of the pneumatic tire, because it was utilized almost immediately. This is usually spoken of as the sewing-machine; but the essence of the invention was not a machine, but merely an instrument; for it consisted of a needle in which the eye was near the point, instead of at the other end, as in existing needles. The machine afterwards produced was merely an obvious means for using the new kind of needle.

The invention of the sewing-machine was one rich in influence on subsequent progress; and all the story connected with it is interesting in many ways. But the most wonderful fact connected with the invention is that it was not made before! Many inventions have not been made because the conditions at the time did not demand them, or make their successful utilization possible: and yet some inventions, like the Voltaic arc, were made despite the unfavorable conditions. But what conditions were unfavorable to the utilization of Howe's sewing-machine, even as far back in history as the days when the pyramids were built? The Howe sewing-machine was not so complicated an apparatus as the ballista, or the chariot, used by the Assyrians and the other nations in the "fertile crescent," that curved from Alexandria to Babylon; and it was much easier and cheaper to make. Its construction required immeasurably less scientific knowledge and carefulness than the printing press, the gun, the telescope and the microscope, and a score of appliances that had preceded it by several centuries. Why was the sewing-machine not invented before? Why, why? This question continually presents itself to the mind, when certain simple inventions appear, that (so far as we can see) could have been invented and ought to have been invented, long before.

In 1846, the printing-telegraph was invented by House. No such question as that just discussed is presented to our minds by this invention, because we realize that it could not have been invented before some means of generating continuous electric currents had been invented. The printing-telegraph was not an invention of the same order of influence as the sewing-machine; but it has assisted the work of the telegraph in supplying news, especially in reports of stock fluctuations.

In the same year, De Lesseps started his project of building the Suez Canal, and joining the Mediterranean to the Red Sea; so that ships could proceed to India from Europe by a direct route. Many centuries before, a canal had been cut and generally used that ran from the Nile River to the Red Sea. The canal that De Lesseps proposed was to be larger, and the engineering difficulties greater. The vast enterprise was finally carried out, at a cost of about $100,000,000. It seems to have passed through the three successive stages of conception, development and production. The idea of building a canal did not originate in 1846, or in the brain of De Lesseps; for the idea was very old, probably older than recorded history. But the only man who formed the mental picture in his mind and afterwards developed it into a concrete plan was De Lesseps. He did this; and his plan was so complete and coherent, and so evidently practical, that he finally succeeded in convincing engineers and capitalists of the fact, and forming a large company. The execution of the concrete plan was not begun until 1859, and it was De Lesseps who began it. Thus De Lesseps, though he did not conceive the basic idea, conceived and combined the various ideas necessary to embody the basic idea in a concrete plan, then constructed the concrete plan, and then produced the actual instrument.

This instrument (the canal) was a very useful instrument. An instrument, according to the Standard Dictionary, is "a means by which work is done." By means of the Suez Canal, the work of direct water transportation between the Far East and Europe was done; and it could not have been done, except by means of that instrument. It has been done by that instrument ever since, and at an increasing rate. The canal was completed in 1869, and widened and deepened in 1886. It has shortened the water distance between England and India by about 7600 miles, and has had a tremendous influence on history, especially on Great Britain's history. One of the largest stockholders is the British Government; three-fourths of the ships passing through it have been British; and though the whole world has benefited, the greatest single beneficiary has been Great Britain.

Yet De Lesseps was a Frenchman! This calls to our minds the fact that although some of the greatest names in History are French, yet the French nation, as a nation, has never shown the same concerted national purpose as the British. In this respect, the French seem to have borne somewhat the same relation to the British, as the Greeks did to the Romans: and yet the French are more nearly allied by blood and language to the Romans than are the British. The Greeks and the French aimed to make life pleasant, by the aid of the fine arts and a general utilization of all that is delightful; while the Romans and the British, early in their careers, conceived the idea of dominion, embodied the idea in a concrete plan, and proceeded to carry the plan into execution. The plan was continually accommodated to the changing conditions of the times, and the means of execution were continually accommodated also. The result has been that Greece and France never, as nations, acquired dominion even approximately; while Rome did completely, and Great Britain did, approximately.

The author does not wish to be understood as approving of the idea of acquiring dominion, or as failing to realize the sordidness of such an ambition, and the evil that men and nations have done, in order to achieve it. He begs leave to point out, however, that the Machine could not have been built, except under the stable conditions that large nations permit better than small nations do; and that it has been the endeavor to achieve dominion by aspiring tribes and nations, and the consequent endeavor to gain strength in order to prevent it, by other aspiring tribes and nations, which have caused the gradual building up of the great nations of today, with the comfort, security and culture that their existence permits.

In the same year, 1846, artificial limbs were invented, and so was the electric cautery. Neither of these inventions had a profound influence; but each was a new creation, and each formed a useful and distinct addition to the Machine. But another invention was made in 1846, that has had great influence.

This was the invention of gun-cotton, made by Schonbein in Germany by the action of nitric and sulphuric acids on cotton, or some other form of cellulose. It was the first practical explosive that depended for its usefulness on the decomposition of a chemical compound, and not on the combustion of a mechanical mixture, like gunpowder. The explosive power of gun-cotton was declared by the chemist Abel to be fifty times that of an equal weight of the gunpowder of that day; but this does not mean that it possessed fifty times the energy. The action of gun-cotton is very much more sudden than that of gunpowder; and for that reason, it exerts a much greater force for an instant, and has much greater efficacy for such purposes as breaking into structures, bursting shells, etc. On the other hand, the very fact that its energy is developed with such suddenness, causes its force to fall to zero very soon, and makes it useless for such purposes as gunpowder fulfils in firing projectiles from guns. In a gun, especially in a long gun, the endeavor is made to keep down the pressure of the gas and prolong its continuance; so that the projectile will receive a comparatively gentle but prolonged push, that will start it gradually from its seat, and will continue to push it, and therefore to increase its velocity, all the way to the muzzle.

Gun-cotton does not belong in the class with the typewriter and the telegraph, that merely assist men to transact business: gun-cotton transacts business "on its own account." Gun-cotton belongs in the class with the gun; and its main influence has been to increase the self-protectivity of the Machine. It has done this mainly by increasing the power of the submarine torpedo against the hulls of warships. It may be objected that both sides in a war between civilized nations would use torpedoes, that no persons except organizations controlled by civilized nations (such as those in warships) would use torpedoes, and that therefore, whatever effect the torpedo might have on the Machine is neutralized by the fact that two civilized bodies use it against each other. True; but the fact that the torpedo and the gun-cotton in it require a high degree of civilization in the people who use it, gives civilized people an immediate and tremendous advantage over uncivilized people; and furthermore, the fact that the torpedo and the gun-cotton in it depend for their ultimate effect not only on their being used, but on the degree of knowledge and skill with which they are used, gives an advantage to which every nation in any war is willing and able to utilize the most knowledge and exert the most skill. That is, the torpedo and the gun-cotton in it combine to give the advantage to the nations possessing the highest degree of civilization and willpower. They enable the Machine of the most highly civilized nation to protect itself if it will against the Machines of less highly civilized nations.

In the year following the invention of gun-cotton, came Sobrero's invention of nitro-glycerin, made by the action of nitric acid on glycerin (1847). The new explosive was more powerful than gun-cotton, but much more dangerous to handle. By reason of its extreme sensitiveness and the consequent danger of handling it, the use of pure nitro-glycerin has never been great.

In the same year, 1847, the time-lock was invented by Savage. This invention was in the class with the gun and gun-cotton, in the sense that it enhanced the self-protectiveness of the Machine. It did not enhance its self-protectiveness against a few great, open, external foes, however, but against a myriad of small, secret, internal foes. The Machine is very expensive to maintain in operation, and so is every one of the little mechanisms of which it is composed. And each one of these little mechanisms, each bank, its business corporation, each company, each department store, each little shop, requires that its money be kept safe from the burglar and the pilferer. Inasmuch as the time-lock assists in doing this, the time-lock has been a valuable contribution to the Machine, and has exerted a good influence on history since it was invented.

In the same year, 1847, R. M. Hoe invented his great printing press, that could make 20,000 impressions per hour. As it was a long step forward in the improvement of printing, this invention deserved the applause which it received; and the inventor deserved the financial reward which he received.

In 1848, Dennison invented a machine for making matches. This was a most useful contribution; but one is inclined to wonder why twenty years elapsed between the invention of matches and the invention of a machine for making them. Inventing was not going ahead so fast then as it is now. Surely, no such interval is allowed to pass unutilized, in the present inventing days.

In 1849, the "interrupted thread" screw, for use in closing the breeches of guns was invented. Many men have claimed the honor of this invention. Regardless of who the particular inventor was, the invention itself must be regarded as one of a very high order, from the standpoints of originality, constructiveness and usefulness. Though the screw itself was a very old contrivance, the idea of cutting a long slot lengthwise, so that the screw could be pushed forward quickly without the slow process of continuously turning it around, yet so arranged that the screw could be turned when near the end of its travel, and the force-gaining power of the screw-thread thus secured, seems to have been entirely new. Certainly the idea was original and brilliant and useful. To develop the idea into a concrete plan was not difficult, and neither was it difficult to carry the concrete plan into execution. This invention falls into the happy class of which the stethoscope is typical, in which the idea originally conceived was so perfect, that little else was needed. The main use of this invention has been that for which it was first intended, to close the breeches of guns. It is used in most of the navies and armies. Its principal rival is the famous sliding breech-block of Krupp.

In 1849, came an invention in the gun class, the magazine gun, made by Walter Hunt. This invention also seems to fulfil all the requirements of a real invention, in originality of conception, constructiveness of development and ultimate usefulness. But in this case, the original idea can hardly be declared as brilliant and spectacular as that of the "interrupted thread"; and certainly the labor of developing it was incomparably greater. The author feels the temptation of declaring that the more brilliant and valuable a conception is, the less will be the difficulty of developing it. He refuses to declare it, however, realizing that it would not be wholly true; and yet he wishes to point out that if a conception be wholly erroneous, it cannot be developed into any concrete plan whatever; and that many of the most brilliant conceptions, such as the fist-hammer, the flute, the telescope, the telegraph and the telephone were very easily developed into forms sufficiently concrete to make them practically usable. An idea itself is an extremely simple thing, even if it be developed ultimately into a highly complex machine. The idea of the steam engine, for instance, the idea which Hero conceived was, of itself, extremely simple; but see into what complex forms it has been developed! The original idea of Hero was easily developed into "Hero's engine." The improvements that have been made upon it have been the developments of separate ideas that were conceived later. Not one of these ideas has been nearly so brilliant as Hero's, and few of them have been so easily developed.

In 1849, Bourdon invented the steam pressure gauge that still bears his name, and made a contribution of distinct and permanent value, by which ability to keep track of the steam pressure in boilers was increased, and safety from explosion increased proportionately. In the same year, Sir David Brewster invented his lenticular stereoscope. In this beautiful instrument two separate pictures of the same object are put on one card, one picture showing the object as it would look to the left eye from a given distance, and the other picture showing the object as it would look to the right eye. The two eyes of an observer look at the two pictures through the two halves of two convex lenses, that are so shaped that the two pictures are seen as one picture, but so superposed as to represent the object in relief, as the actual object appears to the two eyes. Like the kaleidoscope, this later product of Sir David Brewster's brilliant imagination has had little influence thus far, except possibly to lead the way toward stereo-photography and the stereopticon: but it seems hardly probable that an important field will not be found some day for an invention so suggestive.

In the same year, Hibbert made an important improvement on the knitting machine, and Corliss invented his famous engine cut-off, which vastly economized fuel. Neither invention was especially novel or brilliant, but both were highly practical and useful contributions to the improvement of the Machine. In the same year also came Worm's improvement on the printing press, that concerned the making of "turtles" which held type in a curved shape, so that they could be secured to the cylinder of the press.

In 1850, Scott Archer succeeded in using collodion to fix silver salts on the surface of glass plates in photography. He cannot be credited with the basic invention, because the idea of doing this had been suggested long before. The invention made an important contribution to the growing art of photography, mainly by supplying a stepping stone for further advances. In the same year, an important improvement was made in watch-making by inventing a watch-making machine. This was one of the first of those distinctly American inventions, by which machine-work replaced hand-work, with great increase in speed of production and lessening of cost, but without decrease in accuracy of workmanship.

The influence of this invention has escaped the notice of many of us, for the reason that it has spread so gradually, and has been of such a character as to fail to strike the imagination from its lack of spectacularity. But the idea of what we now call "quantity production" has spread to all the fields of the manufacturing world, and is the basis of much of the enormous industrial progress of the last half century. It is rendered possible mainly by making the machinery automatic, or nearly so. Without such exaggeration, America may justly claim the contribution of automaticity to the Machine of Civilization.

In 1851, Dr. Charles G. Page produced the first electric locomotive. Like many pioneers, it did not achieve practical success itself, but it supplied a stepping stone to further progress. In the same year, Seymour produced his self-rakers for harvesters, and Gorrie invented the ice-making machine. Two more important inventions were the ophthalmoscope, invented by Helmholtz, and the "Ruhmkorff coil," invented by the man whose name still clings to it.

The ophthalmoscope reminds one of the stethoscope; so simple it is, so perfect and so useful. It consists merely of a small concave mirror with a hole in it, a lamp and a small convex lens: the mirror being held so that one eye of a physician can look through it, and the lens being placed conveniently by the physician near the eye of a patient. The mirror reflects light from the lamp towards the patient's eye, and the convex lens concentrates them on whatever is to be examined – usually the interior of an eye. This instrument belongs in the small class of inventions already spoken of, in which the original conception was so perfect, that the acts of developing it into a concrete instrument and then producing the instrument were easily performed.

The Ruhmkorff coil is in the same class; for it consists merely of two coils of wire; one "primary" coil being of coarse wire and connected with a source of electric current, and the other "secondary" coil of fine wire placed around the coil of coarse wire. If the current in the primary coil be made or broken or changed in force or direction, currents are "induced" in the secondary coil; the strength of the two currents varying relatively according to the sizes and lengths of the wires in the two coils. This invention has an interest apart from its usefulness, in the fact that Ruhmkorff invented it for purposes of scientific study, and that no utilization of it for everyday life occurred until nearly half a century later. Then Ruhmkorff coils were made into "transformers" for use in "stepping down" the small high voltage currents needed for transmitting electric currents over long distances, into the larger but lower voltage currents needed for actuating electric lights and motors.