Kitabı oku: «Красота физики. Постигая устройство природы», sayfa 8

Yazı tipi:

Ньютон II: Цвет

Природа улыбается в цвете.

Ли Хант

Из того, что сказано, очевидно, таким образом, что белизна солнечного света составлена из всех цветов, которыми различные сорта лучей, составляющих указанный свет, окрашивают бумагу, или какое-либо иное белое тело, на которое они падают, когда благодаря их различным преломляемостям они разделяются, ибо эти цвета… неизменяемы; и когда все такие лучи с их цветами снова смешиваются, то они вновь производят тот же белый свет, как и раньше.

Исаак Ньютон25

Первая из этих цитат в объяснениях не нуждается – мы, люди, радуемся цвету так же, как мы радуемся, видя улыбку, без явных причин. Объяснение второй цитаты, которое и составит содержание всей этой главы, служит началом более глубокого взгляда на природу цвета и ждет очереди, чтобы занять значительное место в наших рассуждениях и озарить тот Вопрос, на который мы с вами ищем ответ.

Самые чистые и самые глубокомысленные умы – те, что любят цвет больше всего.

Джон Рёскин. Камни Венеции

Это мы и есть – так давайте займемся цветом!

Получение чистого света

Веками белый считался цветом, символизирующим чистоту. В Древнем Египте жрецы и жрицы Исиды одевались лишь в белые льняные одежды – так же, как и мумии, подготовленные к загробной жизни! Белый же – традиционный цвет для подвенечных платьев, используемых во время бракосочетания – заключения союза чистых сердцем. В символике христианства этот же цвет – атрибут Агнца, а также сонмов ангелов и Христа торжествующего (вы можете это видеть на цветной вклейке I).

Кажется, что связывать белый свет с чистотой – правильно. Белый – это цвет главного источника естественного освещения, нашего солнца, когда оно стоит высоко в небе. Белыми мы видим наиболее яркие поверхности – такие как снег, который лучше всего отражает солнечный свет.

Но научный анализ говорит нам о другом.

Когда луч солнечного света проходит сквозь стеклянную призму, появляется цветная радуга или, как мы говорим, спектр. Похожий эффект, причиной которого является прохождение солнечного света сквозь мелкие капельки воды, служит причиной возникновения естественных радуг.

До работ Ньютона бытовало мнение, что цвета в свете, выходящем из призм или дождевых капель, возникают из-за того, что белый свет теряет свое качество, проходя сквозь эти объекты. Было общепринято думать, что различные цвета – это смеси черного цвета (темноты) и белого в различных пропорциях. В зависимости от того, насколько долгий путь свет проходит сквозь призму, он портится в большей или меньшей степени и поэтому выглядит имеющим тот или иной различный цвет. Эта идея подкупает своей простотой: зачем вводить множество ингредиентов, когда достаточно иметь два (или даже один)?

Ньютон же заявил, что белый свет – в том числе и белый, приходящий к нам от солнца, – это смесь множества основополагающих ингредиентов. Согласно его идее, призма вовсе не портит белый свет. Вместо этого она разделяет солнечный свет на его собственные ингредиенты – которые в нем и так присутствовали.

Простой, но полный глубокого смысла эксперимент, который сам Ньютон выделял как experimentum crucis (критический эксперимент) для подтверждения своей идеи, делает эту схему очевидной – его изображение есть на цветной вклейке J. Цвета спектра, в которые белый свет предварительно разложен при помощи призмы, могут быть вновь собраны в белый свет с использованием второй призмы. Если собирается не весь спектр, а только его часть, то на выходе получится не белый свет, а смесь тех цветов, которые прошли через всю оптическую систему. В случае, когда источником света служит естественный свет солнца и экспериментатор отсекает синюю часть спектра, то в выходящем свете преобладает зеленый. Если позволить достигать второй призмы лишь узкому диапазону спектральных лучей, – например, как показано на цветной вклейке, только лучам красного цвета, – то на выходе получится тот же самый цвет.

Суть эксперимента в том, что с помощью второй призмы можно обратить разделение лучей и вернуться к белому свету, неотличимому по своим свойствам от того солнечного света, который был изначально. Как видно на картинке, можно поступить и иначе, скомбинировав вновь только часть спектра. Тогда мы получаем лучи промежуточных цветов, но не белого цвета. Таким образом, призма выполняет анализ входящего в нее белого света.

Этот эксперимент легко интерпретировать, предположив, что свет состоит из фотонов (правда, этот термин возник лишь века спустя, но, чтобы не запутать читателя, я буду называть атомы света фотонами).

Фотоны могут быть различных сортов – например, разных форм или, скажем, разной массы, – и за счет этого на них по-разному влияет стекло призмы. В этом случае призма, искривляя по-разному траектории различных типов таких атомов, будет разделять и, по сути, сортировать их. То есть она работает как современный торговый автомат, который самостоятельно разделяет различные виды брошенных в него монеток. Различные виды фотонов также по-разному воздействуют на наши глаза, производя ощущения различных цветов.

Ньютон не заявлял о своей приверженности ни этой, ни какой-либо другой конкретной модели. Это была бы лишь гипотеза! Но примерно так он мыслил, планируя свою дальнейшую экспериментальную программу.

Как далеко можно зайти в этой сортировке световых лучей? Мы можем позволить лишь маленькой части спектра беспрепятственно идти дальше, таким образом получая лучи чистых спектральных цветов. Составные части таких отфильтрованных лучей, чем бы они ни были, при прохождении сквозь призму были развернуты на один и тот же угол. Действительно ли этот процесс выделил одинаковые, фундаментальные составляющие света? Или в них кроется еще какая-то новая структура, которую можно иным способом обнаружить и произвести их дальнейшую очистку?

Ньютон подвергал свои очищенные цвета, лучи спектральных цветов, всевозможным издевательствам. Он отражал их от различных поверхностей, пропускал сквозь линзы и призмы из всяческих прозрачных (или частично прозрачных) материалов, не только лишь из обычного стекла. И обнаружил, что все эти процессы оставляют неизменным результат изначальной спектральной сортировки при помощи призмы.

Спектрально желтый, будучи отраженным, остается желтым; спектрально синий остается синим – и т. д. Часто свет поглощается теми предметами, которые мы воспринимаем как цветные. Например, какой-либо синий предмет может поглощать все спектральные цвета, кроме близких к синему, который он отражает, – и именно поэтому он и представляется синим. Но никогда не бывает так, чтобы спектрально желтый отразился бы как спектрально синий или какой-либо другой цвет, кроме того же желтого.

То же правило справедливо и для прохождения света сквозь материалы (преломление). Спектральные цвета и тут сохраняют свою целостность. Разные цвета, как правило, преломляются под различными углами, разумеется – ведь прежде всего именно таким образом призма их и разделяет, – но любой данный материал будет преломлять лучи любого данного спектрального цвета определенным образом.

При помощи экспериментов наподобие этого Ньютон установил, что лучи света, полученные при помощи спектрального разложения, – чистые субстанции с постоянными, воспроизводимыми свойствами. И белого цвета в спектре нет. Лучи белого света всегда можно подвергнуть анализу на составляющие спектральные цвета, и они всегда оказываются смесью различных компонентов. Забавно, но, несмотря на связанную с ним символику, белый свет никогда не чист.

(Во имя точности я должен упомянуть о том, что не все так просто. То, что лучи чистого спектрального цвета нельзя дальше раскладывать на составляющие, не совсем правда. На самом деле можно – на составляющие различной поляризации. Естественно будет обсудить этот вопрос дальше, в связи с работами Максвелла. Хотя это и возможно, не так просто разделить луч единого спектрального цвета на две поляризованные компоненты, поэтому для большинства задач различиями между ними можно пренебречь. Похожая ситуация и с составляющими веществ – химическими элементами. Образец чистого элемента может оказаться смесью изотопов, которые непросто, но возможно отделить друг от друга.)

И хотя я ни разу не слышал, чтобы работу Ньютона описывали таким образом, я думаю, что уместно отметить: то, что сделал Ньютон в этих экспериментах и создавая свой труд «Оптика», стало отправной точкой химии света. Анализ или очистка – первый шаг в химии.

Химия света

Теперь, когда мы очистили свет, мы можем дальше заниматься его химией.

До сих пор наш анализ не противоречил путеводной идее о том, что свет состоит из фотонов и что различные виды фотонов по-разному отклоняются стеклом и за счет этого можно добиться их разделения, пропуская поток фотонов сквозь призму. Каждый спектральный цвет после этого – выделенная и очищенная фракция фотонов определенного вида. Таким путем мы определили элементы света.

Давайте сравним и найдем общие и отличительные черты химии света и более знакомой, хотя и развившейся позже, гораздо более сложной науки – химии вещества, начиная с сопоставления их периодических таблиц.

• В периодической таблице света есть лишь одна строчка – радуга из спектральных цветов. Спектрально чистые цвета – это ее элементы. В периодической системе вещества несколько строк, и элементы в ней расположены в столбцах, каждый из которых означает, что входящие в него элементы имеют в чем-то схожие, хотя и отличающиеся химические свойства. Также в ней имеются два несообразных протяженных выступа – последовательности лантаноидов (редкоземельных элементов) и актиноидов, – в пределах которых химические свойства веществ почти не меняются.

• Периодическую таблицу света можно получить в ощутимой, физической форме. И в самом деле, достаточно лишь взять луч от солнца или от другого светящегося раскаленного предмета, пропустить сквозь призму и спроектировать на экран – и вот вы ее видите. Периодическая таблица химических элементов, напротив, лишь мысленная абстракция. В природе нет соответствующего ей объекта.

• Периодическая система света – непрерывная последовательность, а периодическая система вещества дискретна.

• Элементы света лишь очень слабо взаимодействуют друг с другом. Отметим, что, если перекрестить два световых луча, они свободно пройдут друг сквозь друга, не взаимодействуя (т. е. от этого не полетят искры, к примеру, и в пространстве не останутся висеть отвалившиеся молекулы света). В этом смысле каждый элемент света похож по своим свойствам на «благородные» или «инертные» газы из химии вещества.

Обобщая, естественно рассматривать оба вида химии в единой связке, как науку об атомах и их взаимодействиях, причем не важно, идет ли речь об атомах света или об атомах вещества. В этом, более общем видении атомы света уже не ведут себя как инертные. Хотя и не взаимодействуют так просто друг с другом, они вступают по определенным правилам в сочетания с атомами вещества. Этот вопрос мы как следует разберем ниже и углубимся в него, когда станем рассматривать главу «Квантовая красота I: музыка сфер».

Великой целью алхимиков было получение философского камня, который, как они верили, обладает способностью превращать один вид атомов в другой – например, свинец в гораздо более ценное золото. Для атомов света философский камень существует – это движение! Если мы двигаемся навстречу лучу спектрально чистого цвета, то он будет видеться нам тоже как спектральный цвет, но другой. Цвета сдвигаются прочь от красного цвета в сторону синего, и мы говорим, что такой свет испытывает синее смещение. Точно так же, двигаясь вдоль луча прочь от источника света или глядя на удаляющийся от нас источник света, мы увидим красное смещение. Размеры этих смещений пропорциональны скорости относительного движения и очень малы, если только эта скорость не сопоставима со скоростью света. Они были заведомо малы для того, чтобы Ньютон имел возможность их заметить. Для большинства практических целей ими можно пренебречь. Но красное смещение света, исходящего от далеких галактик, – в особенности те изменения, которое красное смещение оказывает на расположение темных и светлых линий спектра, – несет в себе информацию о том, как быстро каждая из таких галактик удаляется от нас, и позволяет составить карту расширения Вселенной.

Идея о том, что свет состоит из отдельных частиц или, как мы называли их, фотонов, прошла в своем развитии несколько периодов расцвета и упадка. Как мы уже сказали, хотя Ньютону и нравилась эта идея, но решительно связываться с ней узами брака он не стал (хотя, так сказать, пофлиртовал с нею слегка, но она так и не стала для него единственно верной). Однако его авторитет был столь велик, что основанная на представлении о свете как о потоке частиц теория доминировала в науке почти до середины XIX в., когда волновые теории света взяли над нею верх. После того как Максвелл объяснил природу света электромагнитными колебаниями, о чем мы в подробностях поговорим позже, триумф волновой теории света казался неоспоримым. Но в XX в., с возникновением квантовой механики, корпускулярная (основанная на частицах) теория света вернулась вновь – и теперь атомы света были официально наречены фотонами. Привычка Ньютона не выводить из игры множество возможных альтернатив и при этом не отдавать исключительное предпочтение какой-либо одной гипотезе стала провозвестием современного принципа дополнительности.

Выгода от анализа

Для своего фундаментального понимания природы цвета Ньютон нашел отличное практическое применение – он усовершенствовал конструкцию телескопа. До него во всех телескопах использовали пару линз, обычно размещавшихся на противоположных концах длинной трубы. Принцип их действия был таков: свет, исходящий от удаленных объектов, вначале собирался, а затем фокусировался, чтобы создать увеличенные изображения этих объектов. Поскольку лучи разных цветов проходят сквозь линзы по различным траекториям, не все лучи различного цвета получалось точно сфокусировать одновременно, и изображение в телескопе выходило размытым. Эта проблема называется хроматической аберрацией. Ньютон предложил вместо линзы использовать для сбора лучей света вогнутое зеркало и создал телескопы, в которых реализовал эту идею. Его отражающие телескопы (рефлекторы) уменьшали хроматическую аберрацию, а также были проще в изготовлении26. По сути, все современные телескопы являются рефлекторами.

Анализ света послужил плодотворным источником научных открытий. Среди всех таких открытий, которые можно перечислять, сейчас я остановлюсь на одном, которое несложно описать, но при этом оно имело огромное значение и не было чуждо поэзии. (Некоторых других мы коснемся позже.)

Когда рассматриваешь спектр солнечного света, то остается впечатление, что он представляет собой сплошную полосу плавно изменяющейся яркости. Но если в опыте используется высококачественная призма, которая разделяет свет очень точно, то в нем можно заметить множество мелких подробностей. Йозеф фон Фраунгофер, занявшийся изучением солнечного спектра в начале XIX в., обнаружил не менее 574 темных полос в спектре, казавшемся до того непрерывным. Причина появления этих полос оставалась непонятой до середины XIX в., когда Роберт Бунзен и Густав Кирхгоф продемонстрировали, как такие же полосы можно получить и в земных условиях. Если некий объем холодного газа помещается перед раскаленным источником света, этот газ будет поглощать часть света. Газ, как правило, поглощает свет очень выборочно, удаляя из него компоненты в пределах узких спектральных полос. Когда делают спектральный анализ пропущенного через него света, поглощенные цвета в нем отсутствуют, за счет чего в спектре образуются темные полосы.

Различные виды газов (к примеру, газов, состоящих из разных химических элементов) поглощают разные цвета спектра. Поэтому, если мы не знаем, из чего состоит какой-то газ, мы можем понять это, наблюдая, какой именно свет он поглощает! На языке нашей обобщенной химии в переводе Бунзена и Кирхгофа темные линии Фраунгофера говорят нам, что данный атом вещества сочетается только с определенными элементами света, т. е. поглощает определенные цвета, а остальные не трогает. Также есть и обратный эффект, когда нагретый газ излучает свет своих особенных цветов, создавая яркие линии в спектре. В совокупности эти темные и яркие линии похожи на отпечатки пальцев, по которым можно опознать оставившее их вещество.

Таким образом, анализируя свет какой-либо звезды и сравнивая яркие и темные полосы в нем с полученными от разных газов в лаборатории, астрономы могут определить, из чего сделана эта звезда (и узнать много других подробностей об ее атмосфере, откуда и исходит видимый нами свет). Этот метод быстро стал хлебом насущным для физической астрономии и остается таковым по сей день. С фундаментальной точки зрения он позволил нам выяснить, что звезды состоят из тех же самых веществ и подчиняются тем же самым физическим законам, которые мы наблюдаем здесь, на Земле.

Норман Локьер и Пьер Жанссен выполнили ряд наблюдений солнечной короны, загадочные результаты которых сперва поставили под сомнение этот вывод, но в конце концов лишь подкрепили его. В 1868 г. во время солнечного затмения они наблюдали в спектре света от короны яркую линию, неизвестную по наблюдениям какого-либо из газов на Земле27. Было решено, что источник этой линии – новый элемент, названный «короний», который посчитали существующим только во внеземных условиях. Но в 1895-м двое химиков из Швеции, Пер Клеве и Нильс Абрахам Ланглет, а также, независимо от них, Уильям Рамзай обнаружили, что ту же самую линию излучает и газ, истекающий из урановых руд. Так восстановилось утраченное было родство между небом и землей. А новый элемент был назван или, точнее говоря, вновь назван гелием – в честь Гелиоса, древнегреческого бога Солнца.

Ньютон III: динамическая красота

Основные законы ньютоновской механики – это динамические законы, т. е. законы, определяющие, как происходит изменение окружающего нас мира во времени. Динамические законы отличаются от правил геометрии или от тех законов, которые мы обсуждали в главах, посвященных Пифагору или Платону, и которые описывают отдельные объекты или отношения.

Динамические законы побуждают нас расширить наш поиск красоты. Мы должны думать не только о том мире, который есть, но также – главным образом – о более обширном, воображаемом мире того, что может быть. Мир ньютоновской механики – это мир возможностей.

Этот расширенный поиск красоты открывает золото на горе Ньютона (илл. 28). Но необходима небольшая подготовка перед тем, как мы отправимся туда с визитом.

Противопоставление Земли и космоса

Непосредственные предшественники Ньютона оставили натуральной философии большую нерешенную задачу.

В «Звездном вестнике» (Sidereus Nuncius) Галилея была дюжина его зарисовок Луны, такой, какой он увидел ее через первый астрономический телескоп с 20-кратным увеличением, который сам сконструировал. Пятна света и тени ясно указывали на то, что у Луны весьма неровная поверхность (илл. 16).

Илл. 16. Некоторые из поразительных рисунков Галилея, на которых он изобразил увиденную в телескоп Луну


В то время как Галилей опустил небесные сферы до разряда земных, Коперник заставил Землю двигаться как одну из планет среди таких же небесных тел, а Кеплер нашел точные закономерности в движении планет. Хотя их детали нам не слишком необходимы, я приведу три закона Кеплера, что поможет мне выделить две важные вещи.

• Орбита планеты является эллипсом, в одном из фокусов которого находится Солнце.

• Линия, соединяющая Солнце и планету, заметает равные площади за равные промежутки времени.

• Квадрат периода каждой планеты (продолжительность планетарного «года») пропорционален кубу длинной оси эллипса.


Первое важное обстоятельство – эти законы не являются динамическими. Они описывают установившиеся соотношения, а не правила изменения. Второе – это правила движения планет. Они ничего не говорят о движении, которое мы наблюдаем ближе к дому, по опыту земных явлений. Это чуждые сообщения из иной концептуальной вселенной – при том что сама Земля является планетой!

Таким образом, великая незавершенная задача состояла в том, чтобы объединить Землю и космос. Какие общие законы управляют этими двумя схожими на вид королевствами?

25.Цит. по: Ньютон И. Указ соч. – 2-е изд. – М.: Государственное издательство технико-теоретической литературы, 1954. – С. 116.
26.У телескопа Ньютона были, однако, проблемы с другим видом искажения изображения. – Прим. науч. ред.
27.Во время солнечного затмения эту линию наблюдал только Пьер Жанссен. Норман Локьер наблюдал ее чуть позже, в солнечном свете уже без затмения. Их работы поступили в журнал Французской академии наук в один день. – Прим. науч. ред.

Ücretsiz ön izlemeyi tamamladınız.

Yaş sınırı:
0+
Litres'teki yayın tarihi:
16 mart 2016
Çeviri tarihi:
2016
Yazıldığı tarih:
2015
Hacim:
645 s. 109 illüstrasyon
ISBN:
978-5-9614-4154-3
İndirme biçimi:
epub, fb2, fb3, html, ios.epub, mobi, pdf, txt, zip

Bu kitabı okuyanlar şunları da okudu