Kitabı oku: «Fragments of Earth Lore: Sketches & Addresses Geological and Geographical», sayfa 12
III
When we last took a peep at the Outer Hebrides we found those luckless islands all but obliterated under an immense sheet of ice extending from the mainland out into the Atlantic. How far west the great glacier spread itself we cannot as yet positively say; but if the known slope of its surface between the north-west Highlands and the Long Island continued, as there is every reason to believe it would, then it is extremely probable that the ice flowed out to the edge of the great Scottish submarine plateau. Here the sudden deepening of the Atlantic would arrest its progress and cause it to break up into icebergs. In those old times, therefore, a steep wall of ice would extend all along the line of what is now the edge of the 100-fathoms plateau. From this wall large tabular masses would ever and anon break away and float off into the Atlantic – a condition of things which is closely paralleled at present along the borders of the ice-drowned Antarctic continent.
By-and-by, however, a great change took place, and the big ice-sheet melted off the Long Island and vanished from the Minch. We read the evidence for this change of climate in certain interesting deposits which occur in considerable bulk at the northern extremity of Lewis, and in smaller patches in the Eye peninsula of the same island. In those districts the old sub-glacial débris or till is covered with beds of clay and sand in which many marine exuviæ are found – shells of molluscs, entomostraca, foraminifera, etc. They clearly prove, then, that after the ice-sheet had vanished Lewis was submerged in the sea to a depth of not less than 200 feet, and they also prove that the temperature of the sea was much the same then as now, for the shells all belong to species that are still living in these northern waters. It is very remarkable that the marine deposits in question seem to occur nowhere else in any part of the Long Island. We cannot believe that the submergence was restricted to the very limited areas where the shell-beds are met with: it must, on the contrary, have affected a very large portion, if not the whole, of the Outer Hebrides. Why, then, do not we meet with shelly sands and clays, with raised beaches and other relics of the former occupation of these islands by the sea, covering wide areas in the low-grounds? How can we explain the absence of such relics from all those districts which, being much under the level of 200 feet, must necessarily have at one time formed part of the sea-floor? The explanation is not difficult to discover.
Resting upon the surface of the shell-beds at Ness and Garabost we find an upper or overlying accumulation of sub-glacial débris or till. At Ness this upper till closely resembles, in general appearance, the lower deposit that rests directly upon the rocks. It is a pell-mell accumulation of silty clay, crammed with glaciated stones, amongst which are many fragments of red sandstone and some extra-Hebridean rocks, and interspersed through it occur also broken fragments of sea-shells. The marine deposits lying below are usually much confused and contorted, and here and there they are even violently commingled with the upper till. They show, generally, a most irregular surface under that accumulation, and are evidently only the wreck of what they must at one time have been. Now the presence of this upper till proves beyond doubt that the intense arctic conditions of climate once more supervened. A big ice-sheet again filled up the basin of the Minch and flowed over the Long Island – its under-tow creeping along the inner margin of the lofty rock-barrier as before, and eventually stealing over the low-ground at the Butt, where its bottom-moraine or till was dragged over the marine deposits, and confusedly commingled with them. The upper strata of the ice that streamed across the islands renewed the work of abrasion, and succeeded in scraping away all traces of the late occupation by the sea. If any such now exist they must lie buried under the till that cloaks the low-ground on the western margins of the islands. Hence it is that we find not a vestige of shelly beds in any part of the Long Island which was exposed to the full brunt of the ice-flow. At Garabost they have been ploughed through in the most wonderful manner, and only little patches remain. At Ness, however, they are more continuous. This is owing to the circumstance that the ground in that neighbourhood is low-lying and offered no obstacle to the passage of the ice out to sea. Hence the shell-beds were not subjected to such excessive erosion as overtook them along the whole eastern border of the Long Island.
Eventually, however, this later advance of the ice-sheet ceased. The climate grew less arctic, and the great glacier began to melt away, until the time came that its upper strata ceased to overflow the islands. They then passed away to north and south, along the hollow now occupied by the Minch, following the same path as the bottom-ice. Considerable snow-fields, however, still covered the Outer Hebrides, and large local glaciers occupied all the mountain-valleys, and, descending to low levels, piled up their terminal moraines. Some of these local glaciers appear to have gone right out into the Minch, as in South Uist, and may have coalesced with the great glacier that still filled that basin. It was during this condition of things that most of the great perched blocks that are scattered so profusely over the islands began to be dropt into their present positions. During the climax of glacial cold, when the upper strata of the ice-sheet streamed across the Hebrides, large fragments of rock would certainly be wrenched off and carried on underneath the ice; but as only a few of the Hebridean mountain-tops were then exposed, there would be a general absence of such enormous erratics as are detached by frost and rolled down upon the surface of a glacier, and any such superficially-borne erratics would be transported, of course, far beyond the Long Island into the Atlantic. When the ice had ceased to overflow the islands, boulders derived from Skye and the mainland would no longer be carried so directly out to the Atlantic, but would travel thither by the more circuitous route, which the now diminished ice-sheet was compelled to follow.
As the snow and ice melted off the Hebrides, the rocks would begin to be exposed to the action of intense frost, and many fragments, becoming dislodged and falling upon névé, small local ice-sheets, and glaciers, would be stranded on hill-slopes and sprinkled over the low-grounds, along with much broken débris and rock-rubbish. Eventually all the lower-grounds would be deserted by the ice, glaciers would die out of the less elevated valleys, and linger in only a few of the glens that drain the higher mountain-masses. Such local glaciers have flowed often at right angles to the direction followed by the great ice-sheet. Thus, the ice-markings in the glens that come down from the Forest of Harris to West Loch Tarbert, run from north to south, while the trend of the older glaciation on the intervening high-grounds is from south-east to north-west.
The morainic rubbish and erratics of this latest phase in the glacial history of the Long Island may be traced down almost to the water’s edge, showing plainly that there has been no great submergence of that region since the disappearance of glacial conditions. This is somewhat remarkable, because along the shores of central and southern Scotland we have indisputable evidence to show that the land was drowned to the depth of at least fifty feet in post-glacial times. In the Outer Hebrides, however, there are no traces of any post-glacial submergence exceeding a dozen feet or so; that is to say, there is no proof that the Outer Hebrides have been of much less extent than they are now. On the contrary, we have many reasons for believing that they were within comparatively recent times of considerably larger size, and were even in all probability united to the mainland. The abundance of large trees in the peat-mosses, and the fact that these ancient peat-covered forests extend out to sea, are alone sufficient to convince one that the Outer Hebrides have been much reduced in area since the close of the glacial period. These now bleak islands at one time supported extensive forests, although nowadays a tree will hardly grow unless it be carefully looked after. That old forest period coincided in all probability with the latest continental condition of the British Islands – when the broad plains which are now drowned under the German Ocean formed part of a great forest-land, that included all the British Islands, and extended west for some distance into tracts over which now roll the waves of the Atlantic. The palmy days of the great British forests, however, passed away when the German Ocean came into existence. The climatic conditions were then not so favourable for the growth of large trees; and in the uplands of our country, and what are now our maritime districts, the forests decayed, and were gradually overgrown by and buried under peat-mosses. The submergence of the land continued after that, until central and southern Scotland were reduced to a considerably smaller size than now, and then by-and-by the process was reversed, and the sea once more retreated, leaving behind it a number of old raised beaches to mark the levels at which it formerly stood.
The greatest submergence that overtook central and southern Scotland in times posterior to the latest continental condition of Britain did not exceed fifty feet, or thereabout; and the extreme limits reached by the sea in the period that supervened between the close of the glacial epoch and the “age of forests” was not more than one hundred feet. The Outer Hebrides, however, were certainly not smaller in post-glacial times than they are now, and we have no evidence to show that after the “age of forests” had passed away the sea rose higher than a dozen feet or so above its present level. Now there are only two ways in which all this can be accounted for. Either the Hebrides remained stationary, or stood at a level higher than now, while the central and southern parts of Scotland were being submerged; or else there has been a very recent depression within the Hebridean area, which has carried down below the sea all traces of late glacial and post-glacial raised beaches. All we know for certain is, that the only raised beaches in the Long Island are met with in low maritime regions at only a few feet above the present high-water mark. My own impression is that the whole district has been submerged within comparatively recent times; for if the present coast-line had endured since the close of the glacial period, or even since the last continental condition of Britain, I should have expected the sea to have done more than it has in the way of excavation and erosion.
In a former article I have spoken of the sand-dunes and sandy flats of the west coast of the Long Island. These receive their greatest development in North Uist, Benbecula, and South Uist. Along the whole western margin of these islands stretch wide shoals and banks of yellow sand and silt, and similar shoals and banks cover the bed of the shallow sounds or channels. In the middle of the Sound of Harris one may often touch the bottom with an oar, and even run one’s boat aground. It is the same in the Sound of Barra, while, as I have already mentioned, one may walk at low-water from Benbecula into the adjacent islands of North and South Uist. Where does all this sand come from? Certainly not from the degradation of the islands by the sea, for the sounds appear to be silting up, and the general appearance of the sandy flats along the west coast indicates that the land is upon the whole gaining rather than losing. I have no doubt at all that this sand and silt are merely the old sub-glacial débris which the ice-sheet spread over the low shelving plateau that extends west under the Atlantic to the 100-fathoms line. That plateau must have been thickly covered with till, and with heaps and sheets of gravel and sand and silt, and it is these deposits, sifted and winnowed by the sea, which the tides and waves sweep up along the Atlantic margin of the islands.
There are many other points of interest to that I might touch upon, but I have said enough perhaps to indicate to any intelligent observer the kind of country he may be led to expect in the Long Island. Of course the history of the glacial period is very well illustrated in many parts of the mainland, which are much easier of access than the Outer Hebrides. But these islands contain, at least, one bit of evidence which does not occur anywhere else in Britain. In them we obtain, for the first time, data for measuring the actual slope of the ice-sheet. It does not follow, however, that the inclination of the surface towards the Atlantic was the same all over the area covered by the ice-sheet. The slope of the sheet that flowed east into the basin of the German Ocean, for example, may have been, and probably was, less than that of the Hebridean ice-flow. But apart altogether from this particular point, I think there is no part of the British Islands where the evidence for the former action of a great ice-sheet is more abundant and more easily read, or where one may realise with such vividness the conditions that obtained during that period of extraordinary climatic vicissitudes, which geologists call the Glacial Epoch.
Leaving these old arctic scenes, and coming down to the actual present, no one, I think, can wander much about the Outer Hebrides without pondering over the fate of the islanders themselves. Many writers have asserted that the Celt of these rather out-of-the-way places is a lazy, worthless creature, whom we Saxons should do our best to weed out. One cannot help feeling that this assertion is unfair and cruel. The fact is, we judge him by a wrong standard. He is by nature and long-inherited habits a fisherman, and has been wont to cultivate only so much land as should suffice for the sustenance of himself and those immediately dependent upon him. In old times he was often enough called upon to fight, wrongly or rightly, and thus acquired that proud bearing which it has taken so many long years of misery to crush out. He is, as a rule, totally unfit for the close confinement and hard work which are the lot of the great mass of our mechanics – does not see the beauty of that, and has rather a kind of contempt for the monotonous drudgery of large manufacturing towns. One of the few situations in town that he cares to fill is that of police-constable. Give him a life in the open air, however trying it may be, and he will be quite content if he can make enough to feed himself and family. If the fishing chance to be very profitable he does not, as a rule, think of saving the surplus he has made, but looks forward rather to a spell of idleness, when he can smoke his pipe and talk interminable long talks with his neighbours. No doubt this, judged by our own standard, is all very shocking. Why doesn’t he put his money in the savings-bank, and by-and-by die and leave it to those who come after him? Simply because he is a Celt, and not a Saxon.
Of course one knows how it will all end. Ere long the unadulterated Celt will be driven or improved out of these islands, and will retire to other lands, where, mingling and intermarrying with Teutons, he will eventually disappear, but not without leavening the races amongst which he is destined to vanish. And who will take his place in the Long Island? Probably a few farmers, a few shepherds, and a sprinkling of gamekeepers; and it is just possible that a few fishermen also may be allowed to settle down here and there upon the coast. One may see the process going on at present. Large tracts that once supported many villages are now quite depopulated. The time will come when somebody in Parliament will move for the reduction of the Civil Service estimates by the amount of the sheriff-substitute’s salary, and when the jail at Lochmaddy will have nothing higher in the scale of being to imprison than some refractory ram. One may be pardoned for wishing that he could foretell for the islands another fate than this. It is sad to think that a fine race of people is thus surely passing away from amongst us, for, despite all that can be urged against them, they are what I say. The fishermen of Lewis and Barra are bold, stalwart fellows, whom it would be difficult to peer amongst any similar class of men on the mainland. And all through the island one meets with equally excellent specimens of our kind. Many a brave soldier who fought our battles in the great French wars hailed from these outer islands. Pity it is that no feasible plan to prevent the threatened scattering of the race has yet been brought forward. Some day we may regret this, and come to think that though mutton and wool in the Long Island are desirable, yet islanders would have been better.
[Postscript. – On pages 153.4 I have described the second general ice-sheet that overflowed the Outer Hebrides as having eventually become resolved into a series of local ice-sheets and glaciers. Subsequent research, however, has since led me to believe that the district ice-sheets and local glaciers referred to were not the direct descendants of the last great ice-sheet. They appear to have come into existence long after that ice-sheet had entirely disappeared. See Article X.]
VI.
The Ice Age in Europe and North America. 11
In casting about for a subject upon which to address you this evening, I thought I could hardly do better than give you the result of a comparison which I have recently been able to make between the glacial phenomena of Europe and North America. The subject of glaciation seems to be now somewhat worn; but I gather from the fact that writers can still be found who see in our superficial deposits strong evidence of the Deluge, that a short outline of what we really do know may not be unacceptable. In the short time at our disposal, it is obvious that I cannot enter into much detail, and that many interesting questions must remain untouched. It will be as well, therefore, that I should at the outset define the limits of the present inquiry, and state clearly what are the chief points to which I wish to direct your attention. My main object, then, will be to bring into prominence such evidence as seems to betoken in a special manner the uniformity of conditions that obtained in the northern hemisphere during the Ice Age. In other words, I shall confine myself to a description of certain characteristic and representative phenomena which are common to Europe and North America, with the view of showing that the physical conditions of the glacial period were practically the same in both continents.
The phenomena which might be considered under this head embrace nearly all the facts with which glacialists are familiar, but I purpose restricting myself to three questions only, viz.: —
1st. The extent of glaciation
2nd. Changes of climate during the Ice Age
3rd. The results of fluvio-glacial action
The consideration of these questions, even if it were exhaustive (which it cannot be on this occasion), would still leave the general subject very incomplete, for we must forego the discussion of all such interesting topics as the “connection between glaciation and submergence,” "the formation of rock-basins," and the “origin of the geographical distribution of our faunas and floras.” Confining my inquiry within the limits just specified, I shall begin by sketching broadly the general results obtained by glacialists in Europe, and thereafter I shall proceed to give an outline of the corresponding conclusions arrived at by American observers.
I.
The Extent of Glaciation in Europe
To what extent, then, let us ask, has Europe been glaciated? What areas have been covered with perennial snow and ice? Owing to the fulness and clearness of the evidence, we are able to give a very definite answer to this question. It is hardly too much to say that we are as well acquainted with the distribution of glacier-ice in Europe during the Ice Age as we are with that of existing snow-fields and glaciers.
The nature of the evidence upon which our knowledge is based is doubtless familiar to many whom I have the pleasure of now addressing, but for the sake of those who have not such familiarity with the subject I may be allowed to indicate very briefly its general character. A rock-surface over which ice has flowed for any considerable time exhibits either an abraded, worn, and smoothed appearance, or the rocks are disrupted and broken, and larger or smaller fragments are found to have been removed and carried forward in the direction followed by the ice. Now, ice-worn and shattered rock-surfaces of this description, such as can be seen underneath existing glaciers, occur more or less abundantly over vast regions in Europe. They are met with from the North Cape south as far as Leipzig, and from the Outer Hebrides east to the valley of the Petchora and the foot-slopes of the Ural Mountains. Nor are they confined to northern Europe. They appear again and again in France and Spain and Italy, and in the low-grounds of middle Europe, where they occupy positions now far removed from the influence of glacial action. Such ice-worn and disrupted rock-surfaces not only prove that glacier-ice formerly covered large portions of our Continent, but they also indicate for us the directions in which that enveloping ice moved. The smoother surfaces in question are very frequently marked with coarse and fine parallel scratches and grooves of precisely the same nature and origin as the scratches and grooves which characterise the rocky bed of a modern glacier. And these markings, having been produced by the sand, grit, and stones which are pushed and dragged over the rocks by flowing ice, necessarily discover for us the path of glacial movement. But all rocks subjected to glacial action are not necessarily smoothed and polished. Sometimes, owing to structural peculiarities, and for various other reasons, rocks cannot resist the pressure of the ice, but are crushed and broken, and the resulting fragments are rolled and dragged forward in the direction of ice-flow. In this manner the path of a glacier becomes strewed with débris which has from time to time been forced from its rocky bed. There is really no mystery, therefore in tracking the spoor of extinct glaciers; for we have two sets of facts to aid us, either of which might suffice to indicate the extent and direction of glaciation. Consider, however, for a moment, what one observes in connection with rock-striation. We have, in the first place, the rounding and smoothing, and the parallel ruts and striæ. Not only so, but we frequently find that one side of prominent projecting knolls and hills is more highly worn and abraded than the other. Often, indeed, one side may show no trace whatsoever of abrasion. Here, again, we have clear evidence of the direction of ice-flow. Who can doubt that the worn and abraded rocks look towards the point whence the ice came, and that the non-glaciated rocks in the rear have been sheltered by the rocks in front? It is for this reason that in the mountainous regions of northern Europe the striated and smoothed rock-surfaces invariably look up the valleys, while the broken and unworn rock-ledges face in the opposite direction.
Once more, note the manner in which the sub-glacial rock-rubbish, consisting of clay, sand, grit, stones, and boulders, has been amassed. In places where the ice must have moved more or less rapidly, as on considerable slopes, no accumulation took place, while in the rear of projecting crags and knobs of rock, sub-glacial materials often gathered deeply. Again, over low-lying tracts, where the motion of the ice would necessarily be retarded, clay, sand, and stones tended to collect. And this particularly appears to have been the case in those regions where the slow-creeping and gradually thinning ice-sheet approached its terminal line. Hence it is that we encounter such thick and wide-spread sheets of sub-glacial detritus upon the undulating low-grounds and plains of southern Sweden, Denmark, Schleswig-Holstein, Holland, northern Germany, Poland, and Russia.
The sub-glacial débris to which I specially refer is known as Till or Boulder-clay in this country, as Krosstenslera in Sweden, as Geschiebelehm or Geschiebemergel in Germany, and as Grundmoräne or Moraine profonde in Switzerland. Its general characters are too well known to require more than the briefest summary. In general this peculiar accumulation is an unstratified clay, containing, scattered higgledy-piggledy through it, stones and boulders of all shapes and sizes. Many of these rock-fragments are smoothed and striated, and even the smallest particles, when viewed under the microscope, often show delicate scratches. Frequently, too, the clay is excessively hard and tough, and in many places it shows a kind of pseudo-lamination, which is generally more or less crumpled, and often highly involved. These appearances prove that the clay has not only been subjected to intense pressure, but has actually been rolled over upon itself. I need only refer to the plentiful occurrence of “slickensides” in such clays – the joints by which the clay is often traversed showing such polishing clearly on their faces. These, and many other facts which time forbids me to mention, have received an explanation which has now been generally adopted by European glacialists. The boulder-clay or till is considered by them to represent the ground- or bottom-moraine of glacier-ice. There used to be a notion prevalent amongst geologists in our country that this clay was almost peculiar to these islands. It occurs, however, in most countries of Europe. Vast regions in the north are more or less continuously covered by it, and we meet with it abundantly also upon the low-grounds of Switzerland, from which it may be followed far down the great valley of the Rhone into the sunny plains of France. The lower valleys of the Pyrenees and other Spanish ranges show it well, and it is conspicuous likewise in northern Italy, especially over the low tracts at the mouths of the great lake-valleys. In all those places one can see boulder-clay of as pronounced a character as any to be met with in Scotland.
Danish, Dutch, German, and Russian geologists have of late years devoted much attention to the study of this clay, which is so remarkably developed in their respective countries. It has been long well known that a large proportion of the stones and boulders contained in the till are of northern derivation, but it is only of recent years that we have ascertained the particular routes by which those wanderers or erratics have travelled. The rock-fragments in question have been tracked back, as it were, to their parent masses, and thus, partly in this way, and partly by the evidence of ice-worn surfaces, we have been enabled to follow the spoor of the great northern ice-sheet in a most satisfactory manner. Let one or two examples suffice. Boulders derived from Lapland and Finland occur in the till at St. Petersburg, and have been traced south-east to Moscow. Again, fragments carried from Gottland, in the Baltic, are met with in the boulder-clay of east Prussia, and have been followed south to beyond Berlin. In like manner boulders of well-known Scanian rocks appear in the boulder-clay of Leipzig. So also Swedish and Norwegian rock-fragments are seen in the boulder-clay of Denmark, Hanover, and Holland.
Very wide areas in northern Germany are covered with an almost continuous sheet of glacial detritus, so that it is only occasionally that the underlying rocks crop out at the surface. Striated rock-surfaces are therefore by no means so commonly exposed as in regions like the Lowlands of Scotland. They are not wanting, however, and their evidence is very striking. Thus, in the neighbourhood of Leipzig and Dresden, we find glacial striæ impressed upon certain highly-abraded and ice-worn hillocks of porphyry, the striæ being the work of ice which flowed into Saxony from the north. Similar striæ;, having a general southerly trend, occur at Rüdersdorf, near Berlin, at Gommern, near Magdeburg, at Velpke in Brunswick, at Osnabrück in Hanover, and at other places. Again, we encounter remarkable evidence of the powerful pressure exerted by the ice in the displacement and removal of huge blocks of strata. In Saxony, for example, the Tertiary strata are turned up, pushed out of place, and involved in boulder-clay to such an extent that the brown coals have often been mined for in this strange position. Witness also the extensive displacements and dislocations of the Cretaceous formation in the Danish islands of the Baltic. So great are the contortions and displacements of the Chalk in Moen, that these disturbances were formerly attributed to subterranean action. Along the north-east coast of that island, cliffs 400 feet in height exhibit the Cretaceous beds thrown upon end, twisted, bent, and even inverted, boulder-clay being squeezed into and between the disjointed and ruptured rock-masses.
From a study of these and similar phenomena, it has been demonstrated that during the climax of the Ice Age a very large part of northern Europe was buried under a thick covering of glacier-ice. And it has been conclusively shown that this ice-sheet streamed outwards in all directions from the high-grounds of Scandinavia, for which reason it is often spoken of as the Scandinavian ice-sheet. But as it was fed, not from the snow-fields of Scandinavia alone, but from the precipitation of snow over its whole surface, it is better, I think, to speak of it as the northern ice-sheet. In the extreme north of Scandinavia the ice flowed northward into the Arctic Ocean, while south of the dominant watershed of Lapland and Sweden its course in those high latitudes was east and south-east. It filled up the depressions of the White Sea, the Gulf of Bothnia, and the Baltic, extending east to the valley of the Petchora and the base of the Ural Mountains, and south-east to Kazan, some 200 miles east of Nijnii-Novgorod. From this point its terminal front trended a little west of south, until it reached the fiftieth parallel of latitude. Undulating a few miles south and north of this parallel, it swept directly west through Russia into Galicia, till it touched the foot-hills of the Carpathian range. After this we follow it along the northern base of the Riesen Gebirge, the Erz Gebirge, and the Harz, and thence westward through Hanover, and into the Low Countries, as far south at least as the mouth of the Rhine. Throughout the vast regions lying west and north of this terminal line, the track followed by the ice has been well ascertained. It was east and south-east in Russia, southerly in east Prussia, south-westerly in Denmark, Hanover, and Holland.