Kitabı oku: «Meteorologie», sayfa 10

Yazı tipi:

2.2Phasenübergänge des Wassers und ihre Bedeutung in der Meteorologie
2.2.1Kondensations- und Gefrierprozesse in der Atmosphäre

Im vorigen Kapitel wurde gesagt, es erfolge ein Auskondensieren des überschüssigen Wassers, wenn die Luft wasserdampfübersättigt werde. Als Beispiele wurden die adiabatische Abkühlung eines Luftpaketes mit Wolkenbildung oder aber auch die Bildung von Nebel – einer Art auf dem Boden aufliegender Wolke genannt. Dieser Vorgang muss nun doch etwas differenzierter betrachtet werden.

Kondensationsprozesse

Die Kondensation erfolgt in Form winziger kugelförmiger Tröpfchen. Wir wissen aber aus dem vorhin Gesagten (s. Seite 74), dass über Tröpfchen, vor allem über sehr kleinen Tröpfchen, der Sättigungsdampfdruck infolge der Oberflächenspannung (s. Seite 85) zum Teil erheblich größer ist als in Tab. 2 angegeben, da sich die dortigen Werte auf eine ebene Wasseroberfläche beziehen. Sättigung über einer ebenen Wasserfläche bedeutet also noch lange nicht Sättigung in Bezug auf die Tröpfchen.

Ein Beispiel möge die Zusammenhänge verdeutlichen: Angenommen, es hätten sich Tröpfchen mit einem Radius von 0,01 µm gebildet. Über ihnen ist der Sättigungsdampfdruck gegenüber der ebenen Wasseroberfläche um 12 % erhöht. Für die Tröpfchen beträgt die relative Feuchte in der Umgebung also nicht 100 %, sondern (da der Sättigungsdampfdruck im Nenner um 12 % größer ist) nur rund 90 %. Die entstandenen Tröpfchen würden also allmählich wieder verdunsten.

So einfach wie oben geschildert kann also die Kondensation in der Atmosphäre nicht vor sich gehen, zumal man weiß, dass auch noch viel kleinere Tröpfchen existenzfähig sind. Wie aber dann? In der experimentellen Atomphysik werden zum Nachweis von Elementarteilchen sogenannte Nebel- oder Kondensationskammern benützt. Man kann darin Luft adiabatisch abkühlen und auf diese Weise den in ihr enthaltenen Wasserdampf zur Kondensation bringen. Verwendet man für solche Versuche sorgfältig von allen Verunreinigungen befreite Luft, so setzt die Tröpfchenbildung erst bei einer relativen Feuchtigkeit von größenordnungsmäßig 800 % ein. Offensichtlich haben also die üblicherweise in der Luft vorhandenen Feststoffpartikel (Aerosole) einen Einfluss auf die Kondensation.

Welchen großen Einfluss Aerosole auf die Kondensation von Wasserdampf in der Luft haben, zeigen Untersuchungen am Forschungszentrum Karlsruhe. Sie ergaben, dass die täglichen Niederschlagsmengen im Mittel jeweils zu Beginn der Woche am geringsten sind, dass sie im Lauf der Woche bis zu 15 % zunehmen und samstags ihre Höchstwerte erreichen. Am Wochenende nehmen sie ab, um mit Beginn der neuen Woche erneut anzusteigen. Als Ursache dieses Phänomens sehen die Karlsruher Forscher den an den Wochenenden verringerten Aerosolausstoß durch Industrie und Verkehr. Im Lauf der Woche reichern sich dann die Aerosole wieder an und führen zu verstärkter Kondensation und Niederschlagsbildung. Parallel dazu hat auch die Niederschlagshäufigkeit ein Wochenend-Minimum und steigt während der Woche um 10 %. Ähnliches gilt für die Bewölkung. Genau umgekehrt ist es – wegen der Abschattwirkung der Aerosole – beim Sonnenschein.

Analysiert man diese Aerosolpartikel auf ihre chemischen Eigenschaften hin, so stellt man fest, dass eine ganze Reihe von ihnen kleine Salzkristalle sind. Sie stammen größtenteils aus den 87 Weltmeeren, von wo aus sie über teilweise komplizierte Vorgänge in die Luft gekommen sind (Abb. 21), von Vulkanausbrüchen, Waldbränden oder künstlichen Feuern, teilweise auch aus Industrieabgasen. Ihre Zahl ist sehr groß. Sie schwankt zwischen 100/cm3 in sehr reiner und 1 Mio. in verschmutzter Großstadtluft. Ihr Größenspektrum schwankt zwischen 10–4 und 1 µm.


Abb. 21 In den sich brechenden Wellenkämmen entstehen zahlreiche, rasch aufsteigende Luftbläschen. Bevor sie die Wasseroberfläche erreichen, bilden sie eine hauchdünne „Blasenhaut” (1). Beim Platzen dieser Haut entstehen Hunderte von nur wenigen µm großen Tröpfchen (2), die rasch verdunsten und die in ihnen enthaltenen Salze freisetzen. Gleichzeitig werden aus den Bläschen bis zu einem Dutzend „Jettröpfchen” hochgeschleudert (3), die ebenfalls verdunsten und Salzkristalle freisetzen.

(Nach Roedel 2000, etwas abgeändert)

Würde Kondensation an einem solchen Kristall stattfinden, so würde sich das Salz im Tröpfchen auflösen und infolge der daraus resultierenden hygroskopischen Wirkung den Sättigungsdampfdruck reduzieren (vgl. Seite 74). Da das Tröpfchen zunächst sehr klein ist, würde die Salzkonzentration sehr hoch und damit die dampfdrucksenkende Wirkung entsprechend stark sein. In der Tat hat sich dieser Vorgang als wesentlicher Teil des Tröpfchenbildungsprozesses herausgestellt. Die beteiligten Salzkristalle nennt man Kondensationskerne.

Wie leicht einzusehen, ist bei sehr kleinen Tröpfchen die Salzkonzentration sehr hoch. Die hygroskopisch bedingte Dampfdruckerniedrigung überwiegt dadurch die Dampfdruckerhöhung infolge der Oberflächenspannung bei weitem. Das bedeutet nicht nur, dass mithilfe von hygroskopischen Kondensationskernen selbst kleinste Wassertröpfchen entstehen, sondern auch, dass sie ohne zu verdunsten dauerhaft existieren können. Mehr noch: Unter bestimmten Voraussetzungen bilden sich sogar schon in ungesättigter Luft über Kondensationskernen winzige Tröpfchen. So erklärt sich die bekannte Tatsache, dass die Luft mit zunehmender Feuchtigkeit diesig wird. Dann haben sich, obwohl noch keine Sättigung eingetreten ist, bereits winzige Tröpfchen konzentrierter Salzlösung gebildet, die das Licht streuen (s. Seite 186) und dadurch die Sicht verringern.

Mit zunehmendem Tropfenradius und gleichzeitig abnehmender Salzkonzentration kommt dann aber der Oberflächeneffekt immer mehr zur Geltung. Ab einem bestimmten Tröpfchenradius, beginnt die Oberflächenspannung die Überhand zu gewinnen: Über dem Tröpfchen wird dann der resultierende Sättigungsdampfdruck größer als über einer ebenen Oberfläche und damit setzt Verdunstung ein (Abb. 22). Ab jetzt müssen andere Prozesse für das weitere Wachstum der Tröpfchen sorgen (s. Seite 125).


Abb. 22 Zur Tropfenbildung in der Atmosphäre (Einzelheiten siehe Text).


Abb. 22 a Eiskristalle und Eisblumen an Fensterscheiben bilden sich bevorzugt dort, wo Kratzer passende Strukturen anbieten.

Gefrierprozesse

Nicht nur die Kondensationsprozesse verlangen unter den Bedingungen der Atmosphäre eine gesonderte Betrachtung, auch die Gefriervorgänge bedürfen einer differenzierten Behandlung. Die Oberfläche eines Süßwassersees gefriert wie erwartet bei einer Temperatur von 0 °C. Auch das Wasser im Erdboden geht praktisch beim Unterschreiten der 0 °C-Schwelle in festes Eis über. Hoch 88 gereinigtes Wasser dagegen konnte man im Labor schon unter –30 °C abkühlen, ehe das Gefrieren einsetzte. Einzelne Tröpfchen reinsten Wassers blieben bis –61 °C flüssig. Flüssiges Wasser mit Temperaturen unter 0 °C nennt man unterkühltes Wasser.

Tatsächlich sind auch zum Gefrieren Kerne notwendig, um die sich der Eiskristall aufbauen kann. Je ähnlicher die Oberflächenstruktur eines Materials der von Eis ist, desto besser eignet es sich als Gefrierkern. Man muss sich die Vorgänge ähnlich vorstellen wie beim Auskristallisieren von Kandiszucker an der Schnur, die dem Kristallisationskern bei der Eisbildung entspricht. Dass sich Eiskristalle besonders gerne dort bilden, wo bereits passende Strukturen vorhanden sind, kann man häufig bei den Eisblumen an Fensterscheiben beobachten. Die Kristallisation setzt bevorzugt an Kratzern oder ähnlichen Unebenheiten der Glasoberfläche ein.

In unserer Umwelt gibt es genügend geeignete Oberflächenstrukturen, die als Kondensationskerne fungieren können. In absolut reinem Wasser fehlen sie. Dort können Kristallisationskerne nur dadurch entstehen, dass sich mehrere Wassermoleküle zufällig in passender Form aneinander anlagern.

Bei Temperaturen nur wenig unter 0 °C ist die Wahrscheinlichkeit dafür recht gering, weil durch die Molekülbewegung ein entsprechendes Zusammenfügen von Wasserteilchen erschwert wird, genauso wie es mit zitternder Hand schwerfällt, eine Nähnadel einzufädeln oder ein Kartenhaus aufzubauen.

Mit sinkender Temperatur und dadurch ruhiger werdender Molekularbewegung steigt die Chance, dass die notwendigen Strukturen zustande kommen und nicht gleich wieder zerstört werden. Bei Kondensationskammerversuchen hat man festgestellt, dass ab Temperaturen von etwa –40 °C die Stabilität so groß geworden ist, dass spontanes Gefrieren einsetzt.

Wolkentröpfchen sind aber kein reines Wasser, das wissen wir schon seit der Diskussion des Kondensationsvorganges. Vielmehr enthalten sie eine Reihe von Substanzen, die als Kristallisationskerne dienen können. Vor allem solche, die selbst eine ähnliche Struktur haben wie das Eis, bilden, wie wir wissen, eine Basis, auf der ein Eiskristall entstehen und wachsen kann. Allerdings muss selbst dann eine gewisse Beruhigung in der Molekularbewegung eingetreten sein, ehe ein geordneter Wachstumsprozess einsetzen kann. Das bedeutet letzten Endes, dass, selbst wenn Kristallisationskerne vorhanden sind, atmosphärische Wassertröpfchen noch nicht bei 0 °C gefrieren, Unterkühlung bis –10 °C ist etwas ganz Gewöhnliches. Es werden sogar noch flüssige Tröpfchen bei Temperaturen bis –35 °C gefunden.

Die Zahl der für die Eisbildung geeigneten Kerne ist weitaus geringer als die Zahl der Kondensationskerne. So findet man je m3 89 Luft nur einen einzigen, der bereits bei Temperaturen über –30 °C aktiv ist. Kerne, die im Bereich –30 °C bis –40 °C Gefriervorgänge einleiten, sind häufiger. Im Mittel enthält jeder cm3 Luft einen von ihnen.

Ähnlich wie die Wassertröpfchen enthalten auch die meisten Eiskristalle in der Atmosphäre winzige Kerne. Auf deren Kristallmuster bauen die Eiskristalle ihre eigenen Strukturen auf.

Energieumsätze bei den Phasenübergängen

Um uns die energetischen Auswirkungen bei der Kondensation von Wasserdampf in der Atmosphäre klarzumachen, betrachten wir die Abb. 23. Wir finden darin ein mit gekennzeichnetes Luftpaket, das auf Meeresniveau liegt und eine Temperatur von 20 °C hat.

Dieses Luftpaket bewegen wir nun in einem Gedankenexperiment mit konstanter Geschwindigkeit nach oben. Dabei kühlt es sich wie gewohnt (vgl. Seite 46) adiabatisch ab, also um 1 K pro 100 m Höhenzunahme. In 1200 m Höhe soll die Taupunktstemperatur erreicht werden. Die Luft ist dann Feuchte-gesättigt und es setzt Kondensation ein. Man spricht deshalb vom Kondensationsniveau, für das das Formelsymbol hk verwendet wird.

Mit einsetzender Kondensation wird die sogenannte Kondensationsenergie frei (vgl. Seite 77). Zur Erinnerung: Die Kondensationsenergie ist beachtlich, sie beträgt nicht weniger 2,3 kJ pro Gramm kondensierenden Wasserdampfes. Diese Energie wirkt sich auf unser Luftpaket wie eine plötzlich einsetzende Heizung aus, die der weiteren Abkühlung entgegenwirkt. Die Folge ist, dass die Abkühlungsrate von bislang 1 K/100 m auf Werte zwischen 0,4 und 0,7 K/100 m zurückfällt. In Abb. 23 macht sich das Einsetzen der „Kondensationsheizung“ durch einen kräftigen Knick in der Temperatur-Höhenkurve des Luftpaketes bemerkbar.

Doch damit ist unser Gedankenexperiment noch nicht zu Ende. Wir heben unser Luftpaket über das Kondensationsniveau hinaus in immer größere Höhen. Dabei geht seine Temperatur weiter zurück – wenn auch langsamer als vor dem Einsetzen der Kondensation. Mit fortschreitender Abkühlung wird auch ständig neuer Wasserdampf zur Kondensation gebracht, somit bleibt die „Kondensationsheizung“ weiterhin wirksam.

Dennoch ist, wie man sieht, die Temperatur-Höhenkurve jetzt keine Gerade mehr. Nach dem steilen Verlauf, den sie mit dem Richtungssprung am Kondensationsniveau angenommen hatte, beginnt sie jetzt wieder zunehmend abzuflachen. Mit anderen Worten ausgedrückt heißt das: Die Abkühlungsraten beginnen wieder zu wachsen. In etwa 3500 m Höhe wird sogar wieder der adiabatische Wert erreicht. Wie kann das sein? Wo doch, wie vorhin gesagt wurde, die Kondensationsheizung weiterhin wirksam bleibt!


Abb. 23 Temperatur-Höhenkurve bei Vertikalbewegungen mit Kondensation.

Die Erklärung für dieses Verhalten liefert uns die Kurve der Sättigungsfeuchte in Abb. 16 auf Seite 63. Denken wir uns 25 °C 90 warme, Feuchte-gesättigte Luft. Ihre Taupunktstemperatur beträgt dann 21,5 °C. Zur leichteren Orientierung ist dieser Punkt mit (10) gekennzeichnet. Wird diese Luft um 5 K auf 20 °C abgekühlt (11), dann werden etwa 21,5–15,0 = 6,5 g Wasserdampf je kg Luft zur Kondensation gebracht (wie die Kondenswassermenge bestimmt wird, ist auf Seite 67 dargestellt).

Hätte die Taupunktstemperatur 15 °C betragen (9) und hätten wir ebenfalls um 5 K abgekühlt, so wären aus einem kg Luft aber nur etwa 3 g Wasserdampf auskondensiert. Hätten wir schließlich die gleiche Abkühlung bei einer Taupunktstemperatur von 0 °C durchgeführt, so hätten wir in einem kg Luft sogar nur 3,8–2,8 = 1,0 g Kondensat gefunden.

Wir können also feststellen: Je kälter die Luft ist, desto weniger Wasserdampf kondensiert bei der Abkühlung um einem bestimmten Betrag (z. B. um 5 K). In der Grafik Abb. 16 manifestiert sich dieser Zusammenhang durch die exponentielle Krümmung der Sättigungsfeuchte-Kurve.

Je weniger Wasserdampf kondensiert, desto weniger Kondensationsenergie wird dabei freigesetzt und desto schwächer wird die aus dem Kondensationsvorgang entspringende Erwärmung der umgebenden Luft.

In der meteorologischen Arbeitspraxis benutzt man zur Analyse des Stabilitätsgrades der Atmosphäre, der Temperatur- und Feuchteschichtung sowie der daraus resultierenden Möglichkeiten zur Bildung und Auflösung von Wolken sog. „Thermodynamische Diagrammpapiere“.

Diese enthalten Kurvenscharen, in die die mithilfe von Radiosonen (s. Seite 414) in verschiedenen Höhen erhobenen Temperatur- und Feuchtewerte eingezeichnet werden. Zusammen mit den Kurvenscharen ergibt sich ein rascher und sicherer Überblick über den thermodynamischen Zustand der Atmosphäre am Messort. Im Einzelnen kann hier nicht auf die Diagrammpapiere eingegangen werden. Details dazu und vor allem auch ein Anleitung zu ihrer Benutzung findet man bei Kraus (2004).

Damit wieder zurück zu unserem Gedankenexperiment. Unser Luftpaket gelangt bei seinem stetigen Aufstieg in immer kältere Schichten, in denen – nach dem oben gesagten – immer weniger Kondensationsenergie (pro Höhe) freigesetzt wird. Die Kondensationsheizung wird also mit zunehmender Höhe schwächer und schwächer. Die Folge ist, dass die Abkühlungsrate langsam wieder auf den adiabatischen Wert von 1 K/100 m wächst. 91

Der Wasserdampfgehalt der Luft kann sich bekanntlich innerhalb weiter Grenzen bewegen. Wir müssen daher noch der Frage nachgehen: Zeigt feuchtere Luft bei Vertikalbewegungen ein anderes Temperaturverhalten als weniger feuchte? Nach dem, was wir von Seite 67ff. her über Taupunktstemperaturen wissen, dürfen wir annehmen, dass in wasserdampfreicher Luft das Kondensationsniveau tiefer liegen wird als in wasserdampfarmer.

Den genauen Zusammenhang liefert uns die theoretische Meteorologie:

hk = 122 * ( ϑo – τo)

Dabei stehen hk für das Kondensationsniveau in m; ϑo für die Lufttemperatur und τo für die Taupunktstemperatur jeweils am Boden (bzw. streng genommen 2 m über dem Boden) gemessen und in °C angegeben.

Die Abbildung in der Randspalte bestätigt unsere Überlegungen. Sie zeigt zwei Beispiele. Die hellblaue Kurve gilt für Luft, die am Boden eine Temperatur von 20 °C und eine relative Feuchte von 50 % hat (τo = 9,2 °C); die dunkelblaue gilt für eine gleich warme mit 66 % relativer Feuchte (τo = 13,4 °C). In der feuchteren Luft wird der Taupunkt und damit das Kondensationsniveau in etwa 800 m, in der trockeneren erst in rund 1300 m Höhe erreicht. (Hinweis: Die Taupunktstemperaturen ändern sich mit der Höhe!)

Da die Kondensation in der feuchteren Luft bereits bei etwa 12 °C, in der trockeneren aber erst bei etwa 7 °C einsetzt, sind die Mengen an frei werdender Kondensationsenergie (s. oben) in der feuchteren Luft größer als in der trockeneren. Die dunkelblaue Temperatur-Höhenkurve zeigt deshalb einen steileren Verlauf als die hellblaue.

Kehren wir noch einmal zu unserem Gedankenexperiment zurück.

Bewegt man das gleiche Luftpaket nach unten zurück, so verdunsten die kondensierten Tröpfchen unter Energieaufnahme allmählich, bis in der Höhe des Kondensationsniveaus der gesamte Wassergehalt wieder gasförmig geworden ist. Die Temperatur-Höhenkurve schaut also bei der Abwärtsbewegung genauso aus wie bei der Aufwärtsbewegung.

Da die bei der Kondensation des Wasserdampfes freigesetzte Energie nicht von außen stammt wie bei der Strahlungsabsorption durch Ozon, sondern vorher schon, wenn auch latent, in der Luft enthalten war, haben wir auch oberhalb des Kondensationsniveaus einen adiabatischen Prozess vor uns. Zur besseren Verständigung unterscheiden wir adiabatische Vorgänge, bei denen keine 92 Phasenübergänge stattfinden und solche, bei denen Kondensation oder Verdunstung auftritt. Die ersten nennen wir trockenadiabatische oder nur adiabatische und die zweiten feuchtadiabatische oder kondensationsadiabatische Vorgänge. Die in Abb. 23 und Abb. 24 dargestellten Temperaturänderungen verlaufen danach unterhalb des Kondensationsniveaus trocken- und darüber feuchtadiabatisch.


Abb. 24 Zum Temperaturverlauf bei Vertikalbewegung von Luftpaketen, in denen Wasserdampf-Kondensation stattfindet (Einzelheiten siehe Text).

Mit der Einführung der Feuchtadiabaten müssen konsequenterweise auch die Begriffe stabil und labil eine Erweiterung erfahren. Ist nämlich in der Luft kondensierbarer Wasserdampf vorhanden, so stellt oberhalb des Kondensationsniveaus die Feuchtadiabate das Kriterium dafür dar, ob die Schichtung labil oder stabil ist. Man hat dafür eigene Diagramme entwickelt, die in Fachbüchern ausführlich beschrieben sind, z. B. bei Kraus (2004), Eichenberger (1969), Hesse (1961), Möller (1973), Weikmann (1938).

Bei den bisher besprochenen feuchtadiabatischen Vorgängen wurde davon ausgegangen, dass beim Absinken wieder der gesamte kondensierte Wasserdampf verdunstet, der Hebungs- und der Absinkvorgang also auf der gleichen Diagrammkurve verlaufen. Was passiert aber, wenn ein Teil des kondensierten Wasserdampfes in Form von Regen, Schnee oder Hagel ausfällt? Wohin gelangt dann der Teil der Kondensationsenergie, der beim Absinken nicht wieder für die Verdunstung aufgewendet wird? Ein geradezu klassisches Beispiel dafür ist der Föhn. Er soll deshalb zur Erklärung der dabei ablaufenden Vorgänge benützt werden.

Bei einer Föhnlage (s. Seite 312) werden Luftmassen von Süden her gegen die Alpen geführt und gezwungen, an der Alpensüdseite aufzusteigen, wie in Abb. 25 gezeigt. Dabei kühlt sich die Luft zunächst vom Punkt A aus trockenadiabatisch bis zum Kondensationsniveau B ab. Von hier aus geht die Abkühlung unter Wolkenbildung feuchtadiabatisch weiter (C). Ab der Höhe D soll Niederschlag einsetzen, der der Luft Wasser entzieht. Beim Punkt E ist die Höhe des Alpenhauptkammes erreicht, und die Luft beginnt auf der Nordseite der Alpen zunächst wieder feuchtadiabatisch abzusinken. Da durch den Regen ein Teil des ursprünglich in der Luft enthaltenen Wassers entnommen wurde, dauert es nicht bis zum Kondensationsniveau, bis alle Tröpfchen verdunstet sind, sondern nur bis zur Höhe Punkt F. Von dort ab verläuft die Erwärmung trockenadiabatisch, sodass die Temperatur am Boden entsprechend dem Punkt G erheblich höher ist als die Ausgangstemperatur.

Letzten Endes geht also die markant höhere Lufttemperatur bei Föhn auf die Wirkung latenter Energie zurück. Wie stark die föhnbedingte Erwärmung sein kann, zeigt das Beispiel vom 6.11.1966. Der Föhnsturm erreichte an diesem Tag auf dem Sonnenblick in 93 3100 m Höhe Spitzenwerte von 120 km/h. Um 7 Uhr wurde in Bozen (241 m über NN) eine Temperatur von 6,0 °C gemessen. Gleichzeitig stand in Innsbruck (579 m über NN) das Thermometer auf 11,9 °C. Denkt man sich die Temperatur von Innsbruck adiabatisch auf das Niveau von Bozen reduziert, so erhält man sogar 15,3 °C und damit einen Wert von 9,3 K über der Ausgangstemperatur. Dieser Temperatureffekt ist ausschließlich auf föhnige Vorgänge zurückzuführen, da um 7 Uhr noch kein Strahlungseinfluss vorhanden ist.


Abb. 25 Zur Entstehung des Föhns (Einzelheiten siehe Text).

Es darf nicht verschwiegen werden, dass die hier vorgestellte Theorie nicht alle bei Föhn auftretenden Phänomene ausreichend erklären kann, z. B. die hohen Windgeschwindigkeiten in den Gipfelregionen und an den Leehängen. Beobachtungen zeigen überdies: Es gibt heftigen Föhn auch ohne Stauniederschläge. Die Föhnluft stammt überwiegend – das haben Messungen ergeben – nicht aus den luvseitigen Ebenen sondern aus Höhen oberhalb 2000 m. Heute versucht man, die Föhnströmung mit den Gesetzen der Flachwasserdynamik zu erklären. Details über die neuen Theorien findet man bei Egger, 1999.

Warum stürzt der Föhn trotz Erwärmung der Luft ins Tal? Beim Überströmen der Alpen wurde das Strömungsfeld um die Höhe der Berge eingeengt. Auf der Alpennordseite steht nun wieder die volle Höhe zur Verfügung, die die Luft auch sofort einzunehmen versucht. Dazu gehört auch eine Ausdehnung der Strömung in vertikaler Richtung – eben der hangabwärts wehende Föhn.

Die Auswirkungen des Föhns auf das Befinden des Menschen können sehr unterschiedlich sein, liegen aber überwiegend im psychischen Bereich. Neben Kopfschmerz, Migräne, Schlafstörungen, Reizbarkeit, allgemeinem Leistungsabfall und depressiven Verstimmungen tritt nicht selten eine übererregt-euphorische Stimmungslage und eine erhöhte psychische Labilität auf, die zu Fehlverhalten, z. B. zu erhöhter Risikobereitschaft und Aggressivität führen kann (Sönning 1998). Denkbare Erklärungen dafür wären die elektromagnetische Impulsstrahlung (Sferics vgl. Seite 142) oder Luftdruckschwankungen im Infraschallbereich. Beide sind regelmäßige Begleiterscheinungen des Föhns.

₺991,70

Türler ve etiketler

Yaş sınırı:
0+
Hacim:
908 s. 297 illüstrasyon
ISBN:
9783846346037
Yayıncı:
Telif hakkı:
Bookwire
İndirme biçimi:
Metin
Ortalama puan 0, 0 oylamaya göre
Metin
Ortalama puan 0, 0 oylamaya göre