Kitabı oku: «Инженерная модель личности. Меняя себя и других – понимай устройство», sayfa 3
Динамика возбуждения ансамблей
Скорость возбуждения ансамблей и его ослабления различается у разных людей. Павлов полагал, что это является характеристикой личности и объясняет различные темпераменты людей.
– Сангвиник – сильное уравновешенное возбуждение и торможение, подвижная фокусировка мышления
– Флегматик – сильное уравновешенное возбуждение и торможение, но фокусировка мышления инертна
– Холерик – сильное возбуждение и слабое торможение, импульсивный тип
– Меланхолик – слабое возбуждение и торможение
Подробнее можно посмотреть в статье вики «Типы высшей нервной деятельности». В то время не было методов, которые бы могли подтвердить это, данное направление оказалось на побочном пути развития науки и пока к этим темам не вернулись. Однако, если посмотреть на современные методы тренировки и обучения, развития ансамблей нейронов, то вряд ли мы имеем дело с какой-то характеристикой всего мозга. Скорее всего, это поддается тренировки, а характеристика темперамента – просто интегральная. По аналогии с тем, как говорят о физически сильных и слабых людях: сила определяется тренировками, а не генетически обусловлено, и разные мышцы тренируются отдельно.
Близко к Павлову есть классификация Кречмера, которая построена на основе психических заболеваний, как предельных состояний мозга, который выделял три типа, примерно соответствующих темпераментам Павлова: эпилептоид – холерик, шизоид – флегматик и маниакально-депрессивный – сангвиник и меланхолик. Кстати, в 2017 году на ITSpring я слушал доклад Юрия Сорокина, который по основной работе – профессионального психиатр, но еще работает в HR. Он нарисовал эти типы на организационной схеме Минцберга в привязке к ИТ-компаниям, и разбирал следующие из этого системные конфликты между продавцами, обычно принадлежащими к эпилептоидному типу и разработчики, которые обычно относятся к шизоидам, как и все сумасшедшие ученые, и их балансировку маниакально-депрессивными менеджерами. Было довольно забавно, можно посмотреть видео или почитать мой конспект.
Если углубляться в эту тему, то надо еще и различать скорость реакции в спокойной ситуации и в условиях различных эмоционального возбуждения, так как эмоции приводят к срабатыванию нейрофизиологических гормональных механизмов, существенно влияющих на скорость передачи нервных импульсов. Причем это влияние не действует на весь мозг одновременно – оно связано с каналами распространения нейромедиаторов, о которых мы будем говорить в главе про эмоции.
Нейроны всегда готовы мыслить, архитектурно мозг реагирует на внешние сигналы, а при отсутствии – идут внутренние размышления. Предмет мыслей управляется динамиками внимания: ход мыслей ими управляет и за ними следует, но может отвлекаться.
Ансамбли нейронов работают одновременно и параллельно, и не вся их работа осознается – поэтому неожиданно всплывают мысли и идеи. Осознание происходит только в том случае, когда возбуждение достигает ансамблей, содержащих модель Я, внутренней сцены.
Для читателей из ИТ уместна аналогия с работой приложения в современной микросервисной архитектуре из агентов, взаимодействующих через асинхронный обмен сообщениями. Скорость доставки и обработки сообщений разными сервисами различна, и зависит не только от устройства самого сервиса, но и от выделяемых ему в моменте ресурсов. При этом в обработке одновременно находятся запросы разных пользователей, и некоторые из них хотят получить один и тот же ресурс, например, конкретную единицу товара на складе. Кто выиграет конкуренцию, определяется ситуативно.
Аналогично и в случае мозга. Если на улице к вам приближается собака, то одни ансамбли могут квалифицировать ситуацию как требующую немедленного бегства, а другие – требовать сохранения спокойствия, и между ними идет конкуренция через силу возбуждения. Понятно, что если ежесекундно будет приниматься новое решение, то поведение будет неустойчивым и заведомо не эффективным. Поэтому есть механизм доминанты Ухтомского: возбуждение, которое выиграло конкуренцию и пошло в действия удерживается, а его конкуренты – ослабевают. И все это часто происходит на уровне, который ниже уровня сознательного принятия решений, мы просто действуем, а объяснения своих действий придумываем позднее. Далее это будет разобрано подробнее на схемах работы мозга.
Понятия распределены по мозгу
Мозг структурно разделен на функциональные области, однако ансамбль, связанный с конкретным понятием, например, «кошка», распределен по многим областям. Он включает образ кошки в зрительной памяти для опознания в поле зрения, в слуховой для опознания мяукания и связанных с кошками слов в звуковом потоке. И простирается до коры головного мозга, где кошки связаны с многими абстракциями – домашними животными, и кошачьими, родственными понятиями, например, тигров, через ассоциативные связи, сказочными персонажами, такими как кот Баюн, и так далее, а образами конкретных знакомых вам кошках. Ансамбль также включает типовые эмоциональные реакции, и типовые действия, в том числе в подкорковых областях мозга, которые могут не осознаваться. Погладить и даже покормить кошку можно на автомате в ответ на поступающие сигналы от зрительной части и без участия осознанно мыслящей части мозга.
Ансамбль нейронов для конкретного понятия, не локализован в одном месте, а распределен по мозгу
Структура нейронов, связанных с одним понятием, если ее рассматривать статически, образует коги, соответствующие отдельным смыслам и объединенные в глобальную сетевую структуру когнитома по Анохину-внуку.
В целом структура ансамблей – сетевая, с частичным вхождением, границы между ансамблями – логические и условны, проходят как мы их выделили. Физических границ между ансамблями нет, там можно выделить лишь нейроны и связи между ними. Если у нас есть отношения абстракции, например, кошка и собака – домашние животные, то мы можем рассматривать отдельные ансамбли для каждого из понятий, или работу ансамбля «домашние животные» в целом, и, более того, для разных контекстов оказывается уместным разное проведение границ с точки зрения описания динамик внимания. То есть здесь различение – логическое, им не соответствует никаких физических границ. На физическом уровне есть лишь границы между нейронами, а не ансамблями.
В зависимости от поступающих сигналов и контекста активируются различные части этого ансамбля, формируется разная динамика внимания: даже если в разговоре речь зашла про вашу конкретную кошку, мысль может идти по-разному в зависимости от темы разговора и интересов собеседников, на это влияют смежные активированные ансамбли нейронов.
Иными словами, ансамбли нейронов — в потенциально-активном состоянии, часть из них активна в моменте и они образуют динамики внимания. Они активизируются сигналами от других ансамблей – внутренних, активированных в ходе размышлений или поступающих при обработке входящего потока внешнего мира, и оба эти влияния накладываются друг на друга.
Развитие ансамблей нейронов
Разделение на ансамбли – логическое и нечеткое: мы не можем четко сказать, где граница между обобщенным понятием кошки, человека, коллеги и конкретными, известными нам кошками и людьми. Однако, в конечном итоге, именно оно формирует смыслы, которые проявляются в мышлении. Здесь как раз возникает очень тонкая грань между объективно существующими объектами и идеальными системами, которые мы выделяем при анализе. Иного способа говорить об ансамблях нейронов, чем в терминах идеальных систем – не существует.
Описывая изменения структуры ансамблей, можно говорить о различении следующих операций:
– использование имеющегося ансамбля с коррекцией состояния
– мягкое перестроение с изменением весов связей так, что ряд нейронов оказывается по иному включен в ансамбли
– разделение и объединение ансамбля
– достройка существующих ансамблей новыми связями и нейронами
В мозгу человека есть большое количество незадействованных нервных клеток. Нейроны и связи между ними формируются по мере роста мозга с очень большим запасом, и первоначально они не нагружены смыслом. Поэтому построение ансамблей выполняется за счет существующих клеток и связей, физического роста клетки или аксонов между ними не требуется. Это используется, в том числе, при физическом повреждении мозга – создаются альтернативные пути, задействуются слабо используемые другие связи и нейроны.
Нервные клетки и связи формируются в процессе роста мозга с большим запасом
Когда мы говорим о различных способностях мышления, то важно помнить об альтернативных путях для достижения одних и тех же результатах. Например, для запоминания большого количества объектов помимо простой тренировки памяти существуют различные мнемотехники, которые позволяют достичь таких же эффектов косвенным образом. И большинство дихотомий в психологии лишь меряют тренированность одних типов путей по сравнению с другими, и за счет тренировки мы можем изменить способ размышления. Вопрос нужно ли это делать – отдельный, это частный случай вопроса стоит ли использовать уже сформировавшиеся сильные стороны, или надо подтянуть слабые.
Примерная архитектура связей разных отделов мозга – задана, выделены функциональные области с большим числом связей. Это и приводит к структурированию мозга на конкретные области. А также, совместно с гормональными механизмами поддерживает базовые способы поведения: поисковое и подражательное, охоту, агрессию, социальное взаимодействие.
Однако, особенности развития конкретного мозга могут приводить к другой архитектуре, и связь является статистической, а не абсолютной. Подробнее я это разбираю дальше, сопоставляя модульную и функциональную архитектуру мозга. Архитектура может служить ограничением для определенных действий, например, межполушарных связей маловато и это ограничивает образование сложных ансамблей между ними. Число удерживаемых объектов внимания также ограничено, поэтому для работы с большим количеством объектов важно правильно организовать смысловые структуры, которые позволят ими управлять.
Исходя из избыточности нервных клеток, можно утверждать, что в подавляющем большинстве случаев ограничения не носят физиологического характера и могут быть сняты путем тренировки и обучения, которое нужным образом достроит ансамбли нейронов. Однако, одна и та же достройка в период раннего развития мозга и уже в зрелом возрасте требует разного количества усилий. Это хорошо известно по обучению языку: дети в многоязыковых семьях легко осваивают несколько языков в раннем возрасте, и в дальнейшем развитии также легче осваивают новые языки, чем те, кто учит другие языки уже в зрелом возрасте.
Достройка ансамблей, даже из существующих клеток требует возбуждения большого количества нейронов, которое должно быть обеспечено дофамином и системой внутреннего подкрепления. Изменение весов в существующих ансамблях, в том числе со сменой пути, требует меньше ресурсов, а использование уже имеющихся ансамблей – еще менее ресурсов.
Более того, есть физиологический процесс, обеспечивающий фиксацию устойчивых связей для быстрого прохождения возбуждения по часто используемым путям – миелинизация. К сожалению, он является необратимым, и перестроить таким образом зафиксированные схемы мышления становится невозможным, хотя можно попробовать сделать что-то с участком, который идет на вход этого процесса, построить альтернативные пути.
Есть отдельные механизмы регулирования, касающиеся роста и отмирания неиспользуемых нейронов и связей, и возрастная динамика активности этих механизмов. С возрастом неиспользуемые связи и избыточные клетки отмирают, слишком часто используемые пути миелинизируются.
Soft мозга – сформированные ансамбли нейронов
До млекопитающих базовым механизмов формирования ансамблей нейронов были предзаписанные программы: рефлексы и инстинкты. У млекопитающих эволюция перешла от них к формированию ансамблей нейронов обучением.
– От безусловных рефлексов перешли к условным, при этом у людей формирование условных рефлексов контролируется сознанием.
– Механизмы инстинктов остались, но их проявление в значительной мере определяется социальными нормами, которые воспринимаются осознанно или без осознания, но в любом случае являются результатом формирования ансамблей мозга, а не врожденными, генетически обусловленными механизмами.
– Гормональные нейрофизиологические механизмы, лежащие в основе эмоций, поддерживают базовые способы поведения: поисковое и подражательное, охоту, агрессию, социальное взаимодействие, однако где и как будет это поведение проявляться, зависит от социальных условий развития ребенка.
В целом полезно различать следующие способы, которыми формируются ансамбли нейронов.
– Наблюдение и подражание – базовый механизм у млекопитающих, обеспечивает основную часть обучения в раннем возрасте
– Обучение родителями, оно тоже есть у всех млекопитающих
– Обучение через текст и другие способы передачи информации
– Личный жизненный опыт
Ансамбли не формируются сами. Есть возрастные динамики формирования конкретных структур с развитием ребенка, но без обучения и личного опыта ансамбли сформированы не будут.
Есть исследования по корреляции между поощрением любознательности в год и успехами в школе и дальнейшей карьере. С другой стороны, насколько я знаю, там не исследовали детально вопрос, насколько важно именно ранее поощрение, и насколько легко это изменить в более позднем возрасте. Ведь понятно, что если родители поощряли любознательность в полгода-год, то они и далее продолжали это делать, в том числе, возможно, противодействуя и компенсируя навязывание правил детскими учреждениями. И наоборот, те родители, которые блокировали любознательность в детском возрасте, продолжали это делать и позднее.
Насколько я представляю, у педагогов, которые занимаются развитием детей, есть достаточно много наработок о возрастной динамике развития. Однако, их сопоставление с нейрофизиологическим развитием мозга еще в будущем, тут тоже много данных наработано до современных исследований, а также не учитывают социально-культурные составляющие.
Работа мозга: уровни управления самим собой
Действия человека управляются его мозгом. И нам представляется, что у нас есть поток размышлений, которые дальше превращаются в наши действия. Правда, иногда в этом потоке появляются неожиданные мысли или вдруг возникают сильные эмоции, которые сбивают мысль. А иногда мы совершаем нечто, и недоумеваем: как же нас угораздило. Так происходит потому, что в нашем мозге есть несколько контуров управления, работающих параллельно, и далеко не все мысли нами осознаются. Звучит парадоксально, но это так. Ведь мысли – это распространение возбуждения по ансамблям нейронов. И если это возбуждение ансамбль нейронов распространяется до области, отвечающей за самосознание человека, то мысль ему видна, а нет – так нет. Ряд контуров управления лежат ниже уровня осознания, это наш внутренний автопилот, который в целом помогает эффективно действовать, но в частных случаях дает сбои. И сейчас мы рассмотрим это подробнее.
Модель Канемана
Модель Канемана выделяет два функциональных режима работы мозга в деятельности:
– S1 – быстрое принятие решений и воплощение их в жизнь привычными действиями;
– S2 – медленное мышление, с помощью которого будущие действия собираются из привычных с выбором альтернатив и проработкой различных сценариев.
Фокус его исследований – на том, что быстрое мышление часто ошибается в своих решениях, и эти баги устройства мозга надо иметь ввиду, замечать и во-время останавливаться. При этом у человека есть склонность не признавать баги собственного мышления, а постфактум рационализировать принятые решения, объясняя, что оно было правильным. При том, что реально решение принималось вовсе не из тех соображений, которые предъявляются в виде объяснений.
Если представить картину работы мозга, выявленную Канеманом, то мы получим такую схему.
Сам Канеман не исследует механизмы мозга, которые лежат в основе его функционального деления на две системы. Более того, он говорит, что это – лишь метафора. Однако, поскольку описываемое его моделью явления объективно происходят, то законным является вопрос о выявлении тех механизмов работы мозга, которые лежат в основе таких явлений. Как мы увидим дальше, разделение на быстрое и медленное мышление имеет два аспекта: различная энергия, необходимая для каждого из этих режимов, и функциональное деление мозга.
Кроме того, большинство стрелок на схеме включают два уровня: внутри ансамбли, которые уже активизировались на предыдущих тактах работы и образуют доминанту, активный контекст работы мозга, и все остальные ансамбли, и это – тоже существенно для мышления. Сосредоточившись на конкретном действии, мы способны игнорировать другие факторы внешнего мира. Как я говорил раньше, концепт доминанты был введен Ухтомским для описания фиксации на выполнении определенного действия. Это обеспечивается через возбуждение ансамблей нейронов, связанных с ситуацией, по сравнению с остальными ансамблями, которые находятся вне контекста. И часто играет это «злую шутку» при рассуждениях: мы игнорируем соображения, которые у нас в мозгу не связаны с текущим контекстом, хотя там могут быть решения ситуации. Например, не применяем методы работы с конфликтами или способы принятия решений руководителям в домашних ситуациях и наоборот. Такой разрыв связан с фрагментарностью картины мира в целом, о которой я еще буду говорить, описывая модель флешек.
Энергия для мышления
Возбуждение ансамблей нейронов требует энергии. И это регистрируют методы фМРТ. Однако, этот процесс очень малой вариабельности. Энергетическое потребление нейрона как клетки, основанное на АТФ-цикле Кребса – стабильно и варьируется при возбуждении только на 5%. Мозг всегда потребляет примерно треть от среднего количества энергии, вырабатываемой телом, и вариации слабо на это влияют, в отличие от мышц для которых вариабельность велика.
Так что идея дефицита энергии для работы мозга – миф. По факту, разработчик «устает» писать код и идет «отдыхать» в Warcraft, при том, что во время прохождения миссий мозг работает гораздо интенсивнее, решает сложные задачи принятия решений в игре и взаимодействия с другими игроками в высоком темпе.
Реально тут работают другой механизм, основанный на дофамине, который необходим для передачи возбуждения и расходуется в процессе передачи. Он вырабатывается определенными центрами в мозгу, а дальше распространяется по разным путям, и есть механизмы, которые управляют его распространением в зависимости от ситуации, направляя в двигательные, размышляющие и другие области мозга. И в зависимости от маршрутизации дофамина соответствующие области работают более активно. Такое распределение связано с механизмами мотивации и внутреннего подкрепления.
Усталость мозга от мышления – миф. Реально не хватает мотивации, и он не хочет думать о чем-то
В связи с этим у нейрофизиологов принято говорить об энергии для мышления, подразумевая под этим не энергопотребление нейрона как клетки, а подразумевая ресурс дофамина. А карты возбуждения областей мозга вообще работу кровоснабжение. Я дальше в книге употребляю термины «энергия мышления» и «ресурсы мышления» как синонимы.
Распространение дофамина – частный случай гормонального механизма управления мозгом, который образует эмоциональный контур. Подробный разбор этого механизма будет в главе, посвященной эмоциям. На уровне hardware тут помимо нейронов работают еще клетки глии.
В мозге нет жесткого переключения или-или, есть распределение энергии между управлением текущими действиями и внутренней деятельностью организма с одной стороны, и размышлениями, принятием решений с другой. Долю энергии мышления, которая расходуется на поддержание текущей деятельности, можно оценить по уровню возбуждения вегетативной нервной системы, так делает приложение Welltory, показывая в качестве батарейки свободный остаток, который может быть пущен на размышления. И то же самое показывает в виде батарейки Анна Обухова в своих выступлениях, но с другой калибровкой: 100% по Welltory это 80% у Обуховой (это было в ответах Анны на вопросы на TeamleadConf в ноябре 2023).
Энергия на привычное и новое – различна
Теперь вернемся к модели Канемана. Выполнение привычных действий означает возбуждение сформированных устойчивых ансамблей нейронов, оно задействует малое количество нейронов, а возбуждение большого количества нейронов выполняется лишь в точках выбора. В то время как размышления, медленное мышление требует возбуждения большого количества нейронов в коре. Разница потребления дофамина между режимами быстрого и медленного мышления – примерно в 9 раз, как это показано на схеме из доклада Анны Обуховой «Как помочь людям меняться» (видео) на AgileDays-2021.
Выполнение привычных действий – работа в режиме автопилота. И человек способен так делать довольно сложные действия, например, вести автомобиль. И неожиданно обнаружить себя на полпути к работе в выходной день, хотя собирался в торговый центр: он сел за руль – и у него включился автопилот. Реальный режим – смешанный, например, когда мы пишем статьи или код: мышление выдает команды достаточно верхнего уровня, а автопилот воплощает их в движения мышц и коррекцию по обратной связи, на основе того, что глаза видят в движениях пальцев, если мы не владеем слепой печатью, и на экране. И это – во много раз быстрее, чем в ситуации незнакомой клавиатуры, или режиме написания на малоактивном языке, где написание слов не отработано.
Здесь надо иметь ввиду, что это описание дает однопоточную картину. А реально идет много потоков. Всегда можно выделить мышление некоторый основной контекст, например, управление автомобилем, и наблюдение за окружающей обстановкой, от которого могут идти прерывания различного характера, в том числе не связанные с основным процессом, например, звонок по телефону. А еще, если оперативное управление преимущественно обеспечивается быстрым мышлением, то в фоновом режиме может идти процесс размышлений в медленном мышлении.
Как я уже говорил, идет конкуренция за управление, а механизмы управления вниманием выполняют арбитраж между системами быстрого и медленного мышления, также как между разными ансамблями нейронов в каждом из них. Например, в ситуации, когда в потенциально опасной обстановке на улице один ансамбль выдает реакцию убежать, а другой – осторожно идти, не обращая внимания. Или когда то же самое происходит не на улице, а при получении информации о потенциально опасном изменении политической обстановки.