Kitabı oku: «Tribometrie», sayfa 2

Yazı tipi:

1 Einleitung
1.1 Tribometrie

Die Tribometrie beschäftigt sich mit dem Messwesen auf dem Gebiet der Tribologie.

Dies sind insbesondere die eingesetzten Prüfmaschinen (sog. Tribometer) und die aufgenommenen Messgrößen.

Die tribologische Prüftechnik ist und bleibt das wichtigste Hilfsmittel bei der Optimierung tribologischer Systeme. Obwohl in vielen Bereichen des täglichen Lebens und der Wissenschaft Computer die Arbeit übernommen haben, sind und bleiben mechanisch-dynamische Prüfungen auf Prüfständen in der tribologischen Forschung und Entwicklung unersetzlich. Sie sind notwendig, um unter Berücksichtigung von Kosten und Nutzen tribologische Systeme zu entwickeln und zu optimieren.

Prinzipiell erstreckt sich das Gebiet der Tribometrie von der Erprobung im Feld bis hin zum einfachen Laborversuch. Somit kann man jede Maschine auf der tribologische Fragestellungen untersucht werden, als Tribometer bezeichnen. In der Praxis versteht man unter Tribometer-Versuchen aber meist die relativ einfachen Laborprüfungen der Kategorie VI und V (Modell- und Probekörperversuche). Sowohl auf die unterschiedlichen Prüfmaschinen als auch die Prüfkategorien wird im Rahmen des Kapitels „3.4 - Modellprüfgeräte / Labortribometer“ noch detailliert eingegangen.

Neben der Beschreibung der wichtigsten Modell- und Bauteiltribometer werden auch wichtige Randthemen wie die eingesetzte Messtechnik, Oberflächenkennwerte und -analyse sowie auch Hinweise zur Statistik behandelt, um ein ausreichend breites Basiswissen zu schaffen, das es dem Leser letztendlich erlaubt, das volle Potential der Tribometrie auszuschöpfen.

Ein wichtiges Ziel dieses Buches ist es zu verdeutlichen, dass es in der modernen Tribometrie nicht mehr darum geht, blind Kennwerte zu erzeugen, sondern dass sie das Mittel ist, ein tiefgreifendes Verständnis für tribologische Vorgänge zu generieren.

1.2 Background: Das Kompetenzzentrum Tribologie Mannheim (KTM) an der Hochschule Mannheim

Das Kompetenzzentrum Tribologie verfügt zurzeit über mehr als 50 verschiedene Tribometer für Modell- und Freigabetests und zur Simulation unterschiedlichster tribologischer Systeme. Ergänzt wird der umfangreiche Prüfmaschinenpark durch Geräte und Apparaturen zur hochgenauen Analyse und Dokumentation von Oberflächen sowie für die Viskosimetrie, die Untersuchung des Alterungsverhaltens und die Ermittlung chemisch/physikalischer Kennwerte. Schwerpunkt der Forschungs- und Entwicklungsprojekte sind Untersuchungen unter Grenz- und Mischreibungsbedingungen. Das Kompetenzzentrum Tribologie arbeitet bei der Optimierung von tribologischen Systemen nach einem ganzheitlichen, systemanalytischen Ansatz (Abbildung 1). Das heißt, dass prinzipiell erst einmal alle möglichen Optimierungsansätzen wie Werkstoffe (Metalle, Keramiken, Kunststoffe), Beschichtungen und Schmierstoffe (Öle, Fette, Feststoffe) in Betracht gezogen werden. Ganz wichtig ist aber auch, nach maschinenbaulichen Lösungen zu suchen. Häufig liegt das Problem bereits in einer ungünstigen Konstruktion, ungeeigneter Endbearbeitung oder anderer systematischer Mängel. Mögliche Lösungsansätze werden dann in speziell und individuell geplanten Tribometerversuchen evaluiert. Erst am Ende erfolgt die Bewertung, in die dann auch wirtschaftliche Gesichtspunkte eingehen. Neben den öffentlich geförderten Projekten stellen auch bilaterale Kleinprojekte für KMU sowie der Technologietransfer einen Schwerpunkt der Arbeit dar.

Abbildung 1: Design-Thinking-Ansatz des KTM zur Problemlösung bzw. Optimierung tribologischer Systeme

In Rahmen der täglichen Arbeit stellt sich immer wieder die Frage über den Nutzen von Modell- und Laborprüfungen. Insbesondere die Übertragbarkeit der Ergebnisse auf die Praxis wird hierbei häufig von skeptischen Kunden angezweifelt. Leider basieren viele dieser Zweifel tatsächlich auf schlechten Erfahrungen. Viele Kunden berichten von vollkommen gegensätzlichen Ergebnissen in den Modelltests und später in der Anwendung. Bei genauerer Betrachtung solcher Fälle muss man häufig feststellen, dass die Laborversuche für die praktische Fragestellung falsch ausgewählt, mit falschen Parametern durchgeführt oder einfach falsch interpretiert wurden.

In den letzten Jahren mussten wir mehrfach feststellen, dass es häufig an einem wissenschaftlichen Ansatz und ausreichend tribologischem Background fehlt. Teilweise kaufen sich Institute oder Firmen, die sich jahrelang mit anderen Themen beschäftigt haben, ein modernes Tribometer und wollen nun „auch noch den tribologischen Kennwert ermitteln“ (Originalzitat einer Firma, die sich zuvor auf chemische Materialanalysen konzentriert hatte). Das gleiche Problem sehen wir bei Instituten oder Abteilungen, die bisher auf die Computersimulation spezialisiert waren und denen nur noch der „tribologische Kennwert“ fehlt, um ein tribologisches System hochgenau im Computer abbilden zu können. Unterstützt wird diese Entwicklung von den Prüfstandsherstellern, die natürlich ein großes Interesse haben, ihre Geräte so zu bewerben, als ob jeder, ohne große Vorkenntnisse, problemlos tribologische Versuche durchführen könne. Das mag für einfache Modellprüfungen nach Norm vielleicht noch gelten. Werden die Versuche aber etwas anspruchsvoller, sind Bediener ohne Tribologie- und Maschinenbaukenntnisse häufig überfordert.

Dieses Buch soll dabei helfen, eine wissenschaftliche Vorgehensweise bei der Auswahl und dem Design geeigneter Laborprüfungen aufzeigen sowie Hinweise zur Auswertung der Versuche geben. Daneben werden zahlreiche Randaspekte betrachtet, die für die Interpretation der durchgeführten Versuche und für das Verständnis der tribologischen Vorgänge hilfreich sind.

1.3 Bedeutung und Aufgaben der Tribologie

Auf der Jahrestagung der deutschen Gesellschaft für Tribologie (GfT) 2014 gab es eine Podiumsdiskussion zur Zukunft der Tribologie. Damals war gerade die aktuelle „GfT-Tribologie-Studie 2014“ vorgestellt worden. Der so genannte Tribo-Talk stand daher unter dem Titel „Aufbruch oder Ernüchterung“. Alle Redner bestätigten dort die große Bedeutung der Tribologie für die Volkswirtschaft und Wissenschaft. Trotzdem klang bei allen etwas Wehmut heraus, da diese Bedeutung zwar in Fachkreisen unbestritten ist, sich der Allgemeinheit aber eher nicht erschließt. In Erinnerung geblieben ist mir der etwas resignierende Ausspruch eines Redners: „Tribologie ist halt nicht sexy“. Junge Menschen aber auch Politiker tendieren dazu in Schlagworten zu denken. Worte wie Klimaschutz, CO2-Neutralität, E-Mobility, Digitalisierung, Industrie 4.0, Additive Fertigung usw. hören wir tagtäglich in den Nachrichten. Das Wort Tribologie hört man dort nie. Selbst Fachleute können mit dem Begriff häufig nicht viel anfangen. Schaut man sich aber einmal die Aufgaben der Tribologie an (Abbildung 2), dann sind gerade wir Tribologen es, die die Lösungen zu den zuvor genannten Fragestellungen liefern können und müssen.

Abbildung 2: Aufgaben der Tribologie in Hinblick auf Nachhaltigkeit

Durch Reibung und Verschleiß entstehen den jeweiligen Volkswirtschaften der Industrieländer jährliche Verluste in Höhe von etwa 1,4% [HOLM2017] bis 7% [GFT2021] des Bruttosozialproduktes; das bedeutet für Deutschland mindestens 47 Milliarden EUR/Jahr. Durch konsequentes Umsetzen des bereits vorhandenen tribologischen Wissens könnten davon bereits große Teile eingespart werden. Durch weitere tribologische Forschung kann dieses Sparpotential noch gesteigert werden.

Die verstärkte Berücksichtigung tribologischer Kenntnisse bewirkt beträchtliche Einsparungen bei Energie- und Materialeinsatz, Produktion und Instandhaltung. Energie- und Rohstoffressourcen werden geschont, Umweltschäden vermieden und der Arbeitsschutz verbessert.

Ich bin fest davon überzeugt, dass die weltweiten Klimaschutzziele nur erreicht werden können, wenn es gelingt, neue umweltfreundliche Technologien so attraktiv zu machen, dass sie sich auf dem Markt durchsetzen. Betrachtet man einmal den Anteil Deutschlands an den weltweiten Energieverbräuchen oder dem CO2-Ausstoß erkennt man schnell, dass eine auf Deutschland begrenzte Verbotspolitik nur einen symbolischen Charakter und global nahezu keine Wirkung hat. Stattdessen brauchen wir mehr Forschung und Innovationen, um eine globale Vorreiterrolle einzunehmen. Wir Wissenschaftler und Ingenieure sind also die Gestalter der Zukunft.

So „unsexy“ ist die Tribologie also eigentlich gar nicht. Wir müssen sie nur noch effektiver nutzen und vielleicht auch den Bekanntheitsgrad dieser Nischen-Disziplin erhöhen.

1.4 Die tribologische Beanspruchung

Der wesentliche Unterschied zwischen einer tribologischen und einer mechanischen Beanspruchung liegt in folgenden Punkten:

I.) Eine tribologische Beanspruchung ist primär in den Oberflächenbereichen von Werkstoffen wirksam.

II.) Bei tribologischen Beanspruchungen sind außer den kräftemäßigen auch stoffliche Wechselwirkungen zwischen den Partnern zu beachten.

Tribologische Kennwerte sind daher keine Werkstoffeigenschaft, sondern immer vom tribologischen Gesamtsystem abhängig!

Für tribologische Phänomene spielen daher vorwiegend die obersten Nanometer einer Oberfläche die entscheidende Rolle. Was dabei zu beachten ist, wird im Kapitel „2.2.2 - Aufbau metallischer Oberflächen“ verdeutlicht.

Wie komplex das Wechselspiel zwischen den Elementen des Tribosystems ist, wird dann im Kapitel „2.2.6 – Wechselwirkungen zwischen den Elementen“ detailliert beleuchtet.

Der Systemgedanke in der Tribologie wird sich wie ein roter Leitfaden durch das ganze Buch ziehen. Ohne ein hinreichendes Verständnis für diesen Aspekt sind sinnvolle tribologische Prüfungen, wissenschaftliches Arbeiten und allgemein tribologische Optimierungen nicht möglich.

2 Erläuterung der Systemanalyse

Basis aller tribologischen Begutachtungen ist die Methodik der Systemanalyse zur Beschreibung von Reibungs- und Verschleißvorgängen, die von CZICHOS Anfang der 1970er Jahre eingeführt wurde [CZIC1974]. Sie erlaubt die Erfassung und Ordnung aller wichtigen Größen in der Tribologie. Der erste Schritt besteht darin, die Bauteile einer Maschine oder Anlage, deren tribologisches Verhalten untersucht werden soll, räumlich von den anderen Bauteilen abzugrenzen („Freischneiden“). Dazu legt man in geeigneter Weise eine sogenannte Systemeinhüllende um die tribologisch beanspruchten Bauteile und um die anderen daran beteiligten stofflichen Partner (Abbildung 4). Die Bauteile und die stofflichen Partner bezeichnet man als die Elemente des Tribosystems. Bei einem Gleitlager bestehen sie z.B. aus der Welle, der Lagerschale, dem Schmierstoff und der Umgebungsatmosphäre. Die Elemente machen zusammen mit ihren Eigenschaften und Wechselwirkungen, zu denen wesentlich die Verschleißmechanismen gehören, die Struktur des Tribosystems aus, wobei man als Tribosysteme alle technischen Systeme bezeichnet, in denen Reibungs- und Verschleißprozesse ablaufen.


Abbildung 3: Bausteine der Systemanalyse

Abbildung 4: Funktion des Tribosystems nach CZICHOS/HABIG [CZIC2015]

2.1 Definitionen

In der Wissenschaft ist es wichtig, exakte Begriffsdefinitionen zu haben. Ursprünglich waren die wichtigsten Begriffe in der Tribologie in zahlreichen DIN-Normen zusammengestellt (DIN 50281, DIN 50320, DIN 50322, DIN 50323, DIN 50324). Diese wurden allerdings allesamt zurückgezogen, da das Firmeninteresse an der Mitarbeit in solchen Grundlagenarbeitskreisen gesunken ist. Die Definitionen sind aber weiterhin gültig und wichtig, weswegen sie in dem Arbeitsblatt 7 „Tribologie“ der deutschen Gesellschaft für Tribologie (GfT) zusammengefasst wurden [GFT7]. Aufgrund seiner Bedeutung kann dieses Arbeitsblatt kostenlos auf den Seiten der GfT heruntergeladen werden.

Kostenloser Download des Arbeitsblattes Nr. 7

unter https://www.gft-ev.de/arbeitsblaetter.htm


2.2 Das Beanspruchungskollektiv

Die wichtigsten Größen des Beanspruchungskollektivs sind:

• Bewegungsform

• Bewegungsablauf

• Belastung FN

• Geschwindigkeit v

• Temperatur T

• Zeit tB oder Weg s

Jede dieser Einzelbegriffe kann weiter unterteilt werden. So kann die Bewegungsform in

• Gleiten,

• Wälzen,

• Rollen,

• Stoßen oder Prallen,

• Strahlen und

• Strömen

unterteilt werden. Der Bewegungsablauf kann hierbei

• kontinuierlich,

• intermittierend (unterbrochen),

• repetierend (in einer Richtung wiederholend) oder

• oszillierend (hin und her)

sein.

Bei allen Größen ist der zeitliche Verlauf entscheidend. So hat ein zyklisches Be- und Entlasten eine vollkommen andere Wirkung auf das Tribosystem als eine konstante Kraft.

Auch bei der Temperatur ist beispielsweise ein stetiger Temperaturwechsel deutlich kritischer einzustufen als eine konstante Temperatur, da es dabei zu Kondensationseffekten und damit zum Wassereintrag kommen kann. Bei dem Faktor Zeit sind auch Stillstandszeiten zu berücksichtigen, weil es bei diesen zu einem Anstieg der Haftreibung, zum Wegfließen von Schmierstoff oder zu Korrosionseffekten kommen kann. Bereits kurze Stillstandszeiten helfen einem Tribosystem aber auch, sich thermisch zu erholen.

2.2.1 Elemente eines tribologischen Systems

Innerhalb der Struktur von Tribosystemen können vier Elemente unterschieden werden:

• Grundkörper

• Gegenkörper

• Zwischenstoff

• Umgebungsmedium


Abbildung 5: Elemente des Tribosystems

Jedes dieser Elemente kann durch verschiedene Eigenschaften beschrieben werden. Beim Grund- und Gegenkörper sind dies die Volumen- und Oberflächeneigenschaften. Auch diese können noch einmal unterteilt werden (siehe Tabelle 1). Beim Zwischenstoff erfolgt die Hauptunterteilung nach dem jeweiligen Aggregatzustand, d. h. ob der Zwischenstoff fest, flüssig oder gasförmig vorliegt. Detailliert wird diese Information durch die jeweiligen Stoffeigenschaften; im Fall des festen Körpers zusätzlich durch dessen Formeigenschaften. Auch beim Umgebungsmedium unterteilt man zuerst nach dem Aggregatzustand und im nächsten Schritt nach den jeweiligen Stoffeigenschaften.

Tabelle 1: Eigenschaften der Elemente


Grund-/ Gegenkörper Zwischenstoff Umgebungsmedium
1. Volumeneigenschaften Aggregatzustand Aggregatzustand
1. fest 1. flüssig
1.1. Stoffeigenschaften 1.1. Stoffeigenschaften 1.1. Stoffeigenschaften
- chem. Zusammensetzung - chem. Zusammensetzung - Volumen
- Struktur - Struktur - Dichte
- Festigkeit - Viskosität
1.2. Formeigenschaften 1.2. Formeigenschaften
- Gestalt - Gestalt
- Abmessungen - Abmessungen
2. Oberflächeneigenschaften 2. flüssig 2. gasförmig
2.1. Stoffeigenschaften 2.1. Stoffeigenschaften 2.1. Stoffeigenschaften
- chem. Zusammensetzung der - Volumen - Druck
Oberflächenschicht - Dichte - Feuchte
- Härte der Oberflächenschicht - Viskosität - Temperatur
2.2. Formeigenschaften
- Dicke der Oberflächenschicht
- Rauheit
3. gasförmig
3.1. Stoffeigenschaften
- Druck
- Feuchte
- Temperatur

Auf den ersten Blick sieht dies recht einfach aus, da man davon ausgeht, dass man diese Informationen in den entsprechenden Datenblättern oder Konstruktionszeichnungen finden kann. In der Praxis stößt man aber schnell auf Probleme. Bei den Zwischenstoffen enthalten die Datenblätter der Schmierstoffe aus Geheimhaltungsgründen häufig nicht die Informationen, die man für eine wissenschaftliche Bewertung benötigt. Auch die Stoffeigenschaften von Grund- und Gegenkörper sind nicht einfach zu finden. Aus den Konstruktionsunterlagen erhält man sicherlich Informationen, was für ein Material eingesetzt werden soll und wie der Vergütungszustand sowie die Form- und Rauheitseigenschaften der Oberfläche sind. Hierbei handelt es sich allerdings um theoretische Daten und Werte. Schaut man sich einmal eine reale metallische Oberfläche an - was heute dank moderner oberflächenanalytischer Verfahren möglich ist (siehe Kapitel 9) - so erkennt man, dass die für die tribologische Beanspruchung wichtige Oberfläche in ihrer Zusammensetzung und ihren Eigenschaften nicht dem Grundmaterial entspricht (Abbildung 6).

₺1.507,86