Kitabı oku: «Диаграммы Пенроуза – что это такое?», sayfa 2

Yazı tipi:

В роли второй координаты выступает время, также изменяющееся на диаграмме в бесконечном диапазоне. Время на диаграмме обозначено поверхностями, линиями t = const. Как следствие, любая линия на диаграмме является мировой линией или геодезической, показывает изменение во времени положения отождествлённых точек 2‑сферы или объектов относительно центра системы координат.

Довольно скрупулёзный просмотр доступной литературы и источников в интернете показал, что описание собственно диаграмм зачастую весьма скромное, на что указывают и некоторые другие авторы. Рассматривая практические варианты использования диаграмм, читателю придётся о многом догадываться самому. На рис.2 в исходном, "пустом" виде приведен квадратный вариант диаграммы Пенроуза.


Рис.2. "Пустая" квадратная диаграмма Пенроуза


Использованы следующие обозначения: i+ и i – времениподобные бесконечности будущего и прошлого; i0 – пространственноподобная бесконечность; J+ и J светоподобная (или нулевая) бесконечность будущего и прошлого. Иначе говоря, точки i0 обозначают бесконечное удаление в пространстве, а точки i+, i- обозначают, соответственно, изображают области далёкого будущего и прошлого. Таким образом, на диаграмме в ограниченных рамках показано всё пространство-время. Во многих случаях рядом со сторонами квадрата пишут дополнительно обозначения вида r = ∞, как показано на рисунке.

Нетрудно заметить, что конформный принцип, способ сжатия, уплотнения координатной сетки, заложенный в диаграммы Пенроуза весьма похож на такой же принцип сжатия в логарифмических диаграммах, в которых оси обычной декартовой системы координат сжаты в логарифмическом масштабе. В этом случае логарифмическому диапазону системы координат, например, в 10 единиц соответствует такой же диапазон обычной декартовой системы координат в 1010 единиц. Но логарифмическая диаграмма, в отличие от диаграммы Пенроуза, не имеет ограничений в сторону возрастания. Как и на логарифмических диаграммах, на диаграммах Пенроуза шкалы осей сильно нелинейные.

На рис.2 линии равных расстояний = const (горизонтальные дуги) и времени = const (вертикальные дуги) изображены ярко-бирюзовым цветом. Делениям по осям присвоены единичные значения. Размерность единиц для оси расстояний может быть произвольной: метр, километр, парсек, световой год и тому подобное. В этом случае интервалы по оси времени имеют соответствующую размерность: время на прохождение одной единицы расстояния.

В результате такой дискретизации полей диаграммы выполняется вторая задача – конформное соответствие декартовым координатам. Это значит, что все изотропные (световые) углы в декартовых координатах соответствуют таким же углам на диаграмме Пенроуза в 45о с осями координат. Любая линия, изображенная на диаграмме Пенроуза под этим углом, является светоподобной (нулевой) геодезической, обозначающей луч света.

Повторим: система координат диаграмм Пенроуза отражает лишь одну пространственную координату – удалённость объекта от начала координат. Другими словами, все объекты на диаграмме движутся вдоль одной-единственной линии. Поэтому любые искривленные мировые линии на этой диаграмме означают всего лишь движение объектов (событий) с различными скоростями вдоль одной единственной прямой пространственной линии. Таким образом, любое пересечение линий означает столкновение событий или объектов, их представляющих. При этом каждая точка её помечена как 2‑сфера. Наглядно это можно изобразить в виде рис.3. На рисунке окружностями показаны те самые 2‑сферы, которые обозначаются точками на диаграмме Пенроуза. Фактически диаграммы Пенроуза, как и диаграммы Минковского, и полярные координаты для пары переменных t, r отображают одномерное пространство.

На рисунке ось t не показана, система рассматривается в некоторый момент времени t = 0. Здесь три окружности изображают три разные сферы, которые и называются 2‑сферами. Ни на диаграммах Пенроуза, ни в литературе в описаниях нет упоминаний о других координатах этой системы.



Рис.3. Эквивалентное изображение диаграмм Пенроуза с декартовой координатой. Если отбросить левую часть оси r, то получится эквивалентное изображение диаграммы Пенроуза в полярных координатах


Для трехмерного полярного пространства это две угловые координаты, обычно углы φ и θ. В свою очередь это означает, что все возможные направления радиус-вектора r отождествляются в одно направление. Эта единственная декартова ось изображена на рисунке. Если отбросить отрезок оси от минус ∞ до нуля, то мы получим единственное полярное направление. Другими словами, на декартовых диаграммах Пенроуза расстояния могут быть и положительными и отрицательными, а на полярных диаграммах – только положительными. В последнем случае отрицательная полусфера отождествляется с положительной по правилу "угол падения равен углу отражения". Время может быть положительным и отрицательным.

Отметим, что в литературе на всех диаграммах Пенроуза мировые линии условны, поскольку они отображают лишь последовательность положений в пространстве-времени точек (событий). Чаще всего диаграммы используют для отображения эволюции космологических объектов – Черных дыр или коллапсирующих нейтронных звёзд.

Такое описание в смысле 2‑сфер затеняет главный смысл диаграмм Пенроуза: они описывают поведение только отдельных точек тел, вещества только вдоль одной единственной оси. На рис.3 эти точки для полых 2‑сфер выделены. Принято, что поведение всех других точек таких сфер на поверхности, внутри нейтронной звезды или Черной дыры, вокруг них – считается тождественным поведению этой единственной точки данной сферической поверхности. То есть, все точки поверхности такой сферы отождествляются, поэтому более правильно называть эти точки на диаграмме не 2‑сферами, а точками 2‑сфер в одном направлении радиуса.

Конформное преобразование, как известно, сохраняет углы между линиями, изменяя их длины и форму. На диаграммах Пенроуза конформное преобразование координат имеет целью сохранить углы наклона нулевых геодезических. Действительно, и на диаграммах Минковского и на диаграммах Пенроуза эти линии имеет угол наклона 45 градусов в любой точке диаграммы. Как следствие, сохраняется форма световых конусов. Однако легко обнаружить, что при этом никакие другие углы не сохраняются, несмотря на конформность. Если изобразить мировые линии двух неподвижных в пространстве тел и пересекающую их световую линию, то на диаграмме Минковского эти две линии образуют с линией света один и тот же угол 45 градусов. На диаграмме Пенроуза эти линии будут иметь форму вертикальных дуговых линий, наподобие линий сетки r = const. Углы между ними и линией света – разные.

Классы диаграмм Пенроуза

Если рассмотреть различные варианты диаграмм Пенроуза в научной литературе, то по способу изображения горизонта событий их можно обобщенно, условно сгруппировать в четыре класса:

а) ромбовидные декартовы диаграммы, не содержащие горизонтов событий – рис.1 и рис.2. В литературе можно встретить их образное название – "бриллиант Пенроуза". Класс диаграмм этого вида следует рассматривать как основной, первичный, исходный, лежащий в основе всех остальных классов. Как разновидность, к этому классу следует отнести также полярные диаграммы, имеющие вид правой половины декартовых диаграмм;

б) диаграммы для вечной Черной дыры рис.14, обе левые грани которых являются горизонтами событий и присутствуют две сингулярности; на таких диаграммах возникает анизотропия времени;

в) диаграммы для коллапсирующей нейтронной звезды; верхняя часть такой треугольной диаграммы отсечена, имеет слева сверху горизонт событий 2М, а снизу слева – нулевую ось полярных координат, то есть, по существу, является комбинацией первых двух классов; такая диаграмма неизбежно приводит к разрыву геодезических;

г) многоэлементные, содержащие несколько соединенных друг с другом диаграмм остальных классов, например, пространство-время Райснера-Нордстрема.

Следует отметить, что при наличии некоторых технических, геометрических различий, все без исключения координатные диаграммы являются потомками декартовых координат, их своеобразными клонами. После декартовых координат революционным вариантом систем отсчета можно назвать диаграммы Минковского, используемые в математике теории относительности. Эти диаграммы наглядно демонстрируют фундаментальное положение теории относительности – принцип относительности, провозглашающий равенство всех инерциальных систем отсчета. При этом переходы между системами можно трактовать как поворот системы отсчета на некоторый угол.

Рассматриваемые далее диаграммы Пенроуза тоже не составляют исключения, являясь преемниками как диаграмм Минковского, так и декартовых координат. Главными специфическими чертами диаграмм Пенроуза, как указано, является сжатие бесконечно длинных осей времени и расстояния до конечных размеров. При этом для обеспечения преемственности с диаграммами Минковского это сжатие произведено путем конформного преобразования координат. Как мы уже отмечали, это проявляется в том, что светоподобные геодезические сохранили угол наклона в 45 градусов. Любая линия, изображенная в декартовых координатах или на диаграмме Минковского с наклоном в 45 градусов, будет точно такой же прямой, наклоненной под 45 градусов и на диаграммах Пенроуза.

Используя все те же средства, что и на традиционных диаграммах Минковского, мы можем изобразить те же самые мировые линии. Для этого нам нужно определить правила конформного преобразования, правила, по которым обычные, декартовы координаты преобразуются в координаты диаграммы Пенроуза. Очевидно, что прямые линии при этом искривляются, кроме светоподобных геодезических, линий распространения света.

Для такого конформного преобразования координат используется преобразование осей координат с помощью уравнений:



где u, v – новые значения координат на диаграмме Пенроуза.


Таким образом, диаграмма Пенроуза – это, в сущности, обычная координатная система одномерного пространства. Не следует понимать буквально утверждения, что она отражает пространство 2‑сфер (двухмерных сфер), это отражение всего лишь искусственная экстраполяция. Оно ничего не может нам сказать о движении объекта в пространстве параллельно оси r или перпендикулярно к ней.

Yaş sınırı:
12+
Litres'teki yayın tarihi:
30 mart 2021
Yazıldığı tarih:
2021
Hacim:
48 s. 23 illüstrasyon
Telif hakkı:
Автор
İndirme biçimi:

Bu kitabı okuyanlar şunları da okudu

Bu yazarın diğer kitapları