Kitabı oku: «Метеориты. Космические камни, создавшие наш мир», sayfa 2

Yazı tipi:
Из Йоркшира в Лондон

Метеорит Уолд Коттедж уверенно становился общенациональной достопримечательностью. В томе «Йоркшир» иллюстрированной энциклопедической серии «Красоты Англии и Уэльса», издававшейся между 1801 и 1815 годами, событию в Уолд Коттедж было уделено большое внимание. Использовав свои связи в столице, Топхэм добился отправки метеорита в Лондон, где он был выставлен на всеобщее обозрение в центре города. Выставку широко освещали газеты, включая «Таймс».

За скромную плату в один шиллинг (по нынешним ценам почти 4 фунта) посетитель мог увидеть странный объект своими глазами. За те же деньги он получал брошюру с рассказами троих поселян и маленьким изображением метеорита. Когда сэр Джозеф Бэнкс, президент Королевского общества, заплатил свой шиллинг, чтобы самолично увидеть знаменитый камень, он заметил, что экспонат выставки выглядит удивительно похожим на камень, по рассказам, упавший с неба во время пролета болида в Италии больше года назад. Оба камня выглядели почти одинаково, хотя упали в разных странах с интервалом между событиями больше восемнадцати месяцев.

Бэнкс, однако, твердо придерживался мнения, что эти камни образовались в атмосфере посредством метеоров, а не были причиной их появления. Остро заинтересованный, он привлек к исследованию молодого талантливого британского химика Эдварда Ховарда, попросив его сделать химический анализ обоих камней.

Член Королевского общества, Ховард был известен своими работами по синтезу новых взрывчатых веществ для огнестрельного оружия (причем в ходе своих опытов он получил множество травм). Ховард сумел раздобыть обломки еще шести метеоритов – таким образом, в его распоряжении оказалось целых восемь образцов. Они отличались своими геологическими характеристиками: четыре были действительно каменными, два – чисто металлическими и еще два состояли из смеси камня и металла.

Один из железных метеоритов предоставил Музей естественной истории в Лондоне: это был метеорит из Кампо дель Сьело. Объект, упавший с неба около 4 000 лет назад в Южной Америке, теперь исследовался в химической лаборатории викторианского Лондона: в этот момент духовное и научное значение метеоритов необратимо слилось.

Ховард опубликовал результаты своих изысканий в 1802 году, и его статья до сих пор остается одной из самых важных в истории метеоритики.3 Она была первым систематическим описанием химического и геологического строения метеоритов. Прежде некоторые химики уже пытались раскрыть химическую природу этих камней, но работа Ховарда была выполнена на гораздо более высоком уровне. Особое внимание он уделил каменным метеоритам. Он понял, что они состоят из бесчисленных отдельных зерен, которые он методично разделил на четыре различных вида: странные округлые глобулы, желтые пириты, маленькие металлические пузырьки и «сэндвичи» из комковатой породы, скрепленные тонким слоем землистой субстанции. Это была, вероятно, кропотливая работа: зерна каменных метеоритов крохотные. Все равно что вручную выбрать все маковые зернышки из мешка со смешанным птичьим кормом.

Ховард обнаружил, что маленькие металлические пузырьки в каменных метеоритах содержат никель. Прежде никель в изобилии находили в железных метеоритах французские химики; Ховард воспроизвел и подтвердил их выводы на своей выборке железных и железокаменных образцов. Для камней земного происхождения высокое содержание никеля крайне необычно – таким образом, Ховард впервые показал химическую связь каменных метеоритов с железными и железокаменными. Эти камни были непохожи ни на какие из описанных ранее.

«Неземное» обилие никеля в химическом составе небесных камней, огромные расстояния во времени и пространстве между их падениями при удивительном сходстве характеристик – все это подтверждало идею, над которой прежде смеялись: их небесное происхождение. Ховард не только нашел первое физическое свидетельство, подтверждающее гипотезу Хладни, но и создал новую отрасль науки – космохимию, химический анализ вещества космических тел.

И хотя это все еще выглядело невероятным, но, как прекрасно выразился сам Ховард, «не верить просто по причине непонимания значило бы ставить под сомнение большую часть творений природы».

Медленно и поначалу неохотно научный мир начал привыкать к идее, что метеоры и болиды и в самом деле вызваны тем, что на Землю из космического пространства падают камни и что иногда эти камни достигают земной поверхности. Можно считать счастливой случайностью, что метеорит Уолд Коттедж упал на земли Топхэма – ведь случись это на земле, принадлежащей кому-то другому, не наделенному таким даром создавать шумиху, и этот камень вполне могли бы приспособить для подпирания дверей. (Именно это произошло с метеоритом Лейк Хаус: он почти сто лет попросту валялся на крыльце одноименного елизаветинского поместья в Уилтшире, на юго-западе Англии, пока его небесное происхождение не было подтверждено учеными из Музея естественной истории в Лондоне.) А сегодня точное место падения метеорита Уолд Коттедж отмечено высоким обелиском из красновато-коричневого кирпича, воздвигнутым по указанию самого Топхэма. У его подножия лежит фигурная каменная плита, на которой вырезана следующая надпись:

Здесь,

На этом месте,

13 декабря 1795 года

Упал из Атмосферы

НЕОБЫКНОВЕННЫЙ КАМЕНЬ

Шириной 28 дюймов,

Длиной 30 дюймов,

и Весом 56 фунтов

КОЛОННА

В Память

об этом воздвигнута

ЭДВАРДОМ ТОПХЭМОМ

1799.

К середине XIX века разве только самые непробиваемые упрямцы все еще не приняли гипотезу Хладни. Но одна серьезная проблема оставалась нерешенной: откуда именно брались в космическом пространстве метеориты?

Многие другие места

Хладни предполагал, что метеориты образовывались не просто за пределами земной атмосферы, но и вообще вне Солнечной системы. На межзвездное («между звезд») происхождение метеоритов, по его мнению, указывала огромная скорость, с которой они врывались в земную атмосферу Другая теория Хладни состояла в том, что метеориты могут быть остатками разрушенной планеты – правда, наблюдения ночного неба в телескоп не давали никаких свидетельств существования крупных обломков планет. Очень скоро, однако, была предложена еще одна гипотеза происхождения метеоритов.

В 1802 году, тогда же, когда Ховард опубликовал свою работу о химической природе метеоритов, Пьер-Симон Лаплас, французский математик и астроном, выдвинул свою гипотезу о том, что метеориты все же рождаются поближе к нашему дому Он предположил, что они прилетают с Луны. О своих наблюдениях извержений лунных вулканов в 1787 году уже сообщал немецко-британский астроном Уильям Гершель (впоследствии оказалось, что эти визуальные наблюдения были ошибкой). Лаплас предположил, что если на Луне действуют столь же могучие вулканические силы, какие мы видим на Земле, то продукты извержений могут выбрасываться из лунных вулканов в космическое пространство и долетать до Земли. Это выглядело вполне обоснованно. Гипотеза была так популярна, что в посвященном Йоркширу томе справочника «Красоты Англии и Уэльса» метеорит Уолд Коттедж и описывался как кусочек Луны.

Тем временем перечень известных метеоритов пополнялся. К середине XIX века в музейных коллекциях и кунсткамерах богатых собирателей хранилось более 150 небесных камней. Примерно как раз в это время гипотезе лунного происхождения был нанесен смертельный удар. В 1859 году американский астроном Бенджамин Апторп Гулд опубликовал свои расчеты вероятности того, что камень, выброшенный из жерла лунного вулкана, долетит до Земли: шансов оказалось меньше, чем один из миллиона. Вычисления Гулда показали, что на каждый кусок лунной лавы, попавший на Землю, должно приходиться более полутора миллионов кусков, выброшенных в глубокий космос. Так что, если бы 150 или близкое к этому число метеоритов, упавших на Землю за последние несколько столетий, действительно прилетели с лунной поверхности, размеры Луны должны были бы видимым образом уменьшаться из-за потери огромного количества вещества, извергаемого лунными вулканами. Однако на Луне не было заметно никакой потери вещества. Оказалось, что ответ на загадку происхождения метеоритов скрывался внутри другой проблемы, стоявшей перед астрономами того времени: проблемы «недостающей планеты».

В астрономии расстояния измеряют в «астрономических единицах», сокращенно – а.е. Эта величина примерно равна расстоянию между Солнцем и Землей, которое составляет около 150 миллионов километров. Астрономическая единица – большое расстояние. Свет, быстрее которого во Вселенной ничто не может двигаться, проходит 1 а.е. за восемь минут и девятнадцать секунд: для сравнения, чтобы проехать это расстояние на автомобиле, вам понадобилось бы более 150 лет. Меркурий, самая близкая к Солнцу планета, находится от него на расстоянии в 0,4 а.е. Следующая по удалению от Солнца планета, Венера, отстоит от нашего светила на 0,7 а.е.; Земля – на 1 а.е.; Красная планета, Марс – более чем на 1,5 а.е. Затем идет полоса пустого пространства, и только на расстоянии 5,2 а.е. от Солнца проходит орбита Юпитера. Провал между Марсом и Юпитером беспокоил астрономов на протяжении столетий. Многие считали, что в нем притаилась неоткрытая планета.

В новогоднюю ночь 1801 года итальянский астроном Джузеппе Пьяцци, работая у своего телескопа на Сицилии над составлением каталога звездных положений, заметил на небе нечто странное. Это была яркая точка необычного цвета, непохожая на звезду. (Надо сказать, что Пьяцци был опытным астрономом – он уже девять лет работал над своим звездным каталогом.) Заинтригованный, на следующую ночь он снова навел телескоп на нетипично выглядящую звезду и заметил, что ее положение немного изменилось. Это уж было совсем странно. Звезды не могут менять свое положение от ночи к ночи.1 Пьяцци повторил наблюдения и в третью ночь – объект снова сдвинулся! Тут Пьяцци понял, что это ни в коем случае не звезда. Перед нами прекрасный пример того, как крупнейшие научные открытия начинаются с фразы «хм, как-то это странно выглядит».

Сначала Пьяцци принял новый объект за комету. Для планеты он был слишком мал – выглядел в телескоп крохотной светлой точкой даже при самом большом увеличении. Но последующие наблюдения, выполненные как самим Пьяцци, так и его коллегами-астрономами, не выявили характерного туманного пятнышка, облачка, которое обычно окружает ядро кометы. Орбита, по которой это тело обращалось вокруг Солнца, тоже была совсем не похожа на кометную. Орбиты комет имеют форму очень вытянутого эллипса: они обращаются вокруг Солнца по траекториям, напоминающим вытянутую или сплющенную окружность, а орбита нового объекта была почти круговой, что характерно для планет. Более того, тело обращалось вокруг Солнца как раз в «провале» между Марсом и Юпитером. Таким образом, Пьяцци случайно открыл «недостающую планету». Следуя давней традиции называть небесные тела именами богов – практика, в которой отразилась архаическая вера в сверхъестественную природу ночного неба, – он назвал новооткрытую планету Церерой в честь древнеримской богини плодородия.

Спустя всего год немецкий астроном Генрих Вильгельм Маттиас Ольберс нашел на небе еще один объект с похожими характеристиками. Он тоже перемещался по небу от ночи к ночи, и его орбита тоже была слишком близка к круговой, чтобы это могла быть комета. Туманный ореол, окружающий все кометы, у этого тела тоже отсутствовал, и орбита его лежала в той же области Солнечной системы, что и орбита Цереры – как раз между Марсом и Юпитером. Ольберс назвал новую планету Палладой в честь греческой богини мудрости. Как и Церера, Паллада была крохотной – выглядела просто искоркой света на черном фоне космического пространства. Было, однако, странно, что Церера и Паллада обращались вокруг Солнца примерно на одном и том же расстоянии. Астрономы предсказывали существование только одной «недостающей планеты», и никто из них не предвидел, что планет окажется две. Все остальные известные планеты на участках своих орбит доминировали – Церера и Паллада, казалось, были исключением из этого правила. Ольберс предположил, что это уцелевшие фрагменты большой планеты, развалившейся на куски, – возможно, из-за катастрофического столкновения с кометой или внутреннего взрыва. Он предсказал, что вскоре будут найдены и другие фрагменты.

Гершель подытожил результаты этих открытий и привел характеристики двух новых «планет» в своей публикации, выпущенной Королевским обществом.4 Итак, эти тела в телескоп были видны, как звезды; по размерам они напоминали кометы, но не имели характерной для комет туманной оболочки и обращались вокруг Солнца по орбитам, типичным для планет. Так как эти объекты имели что-то общее и со звездами, и с кометами, и с планетами, но одновременно и отличались от них всех, Гершель предположил, что они могут относиться к новому классу астрономических объектов. Он придумал для них новое название: «астероиды», образовав его из греческих корней ἀστήρ- (астер) и -εἶδος (эйдос), что вместе значило «похожие на звезды». Это слово, впрочем, прижилось не сразу, и многие астрономы еще долго называли новые тела «планетами» или «фрагментами планет».

Третий астероид, названный Юноной, открыл в 1805 году немецкий астроном Карл Людвиг Хардинг. А в 1807 году Ольберс обнаружил и четвертый (для него самого он был уже вторым) – Весту. То, что в промежутке между орбитами Марса и Юпитера оказалось уже четыре малых «планеты», говорило в пользу гипотезы Ольберса о развалившейся на куски планете. Становилось ясно, что между орбитами Марса и Юпитера происходило что-то странное.

Хладни ликовал. Ведь в своем труде «Железные массы» (Jronmasses) он давно уже высказал тогда еще ни на чем не основанную догадку, что метеориты могут быть малыми фрагментами разрушившейся планеты. Астероиды были физическим свидетельством того, что эта гипотеза вполне может оказаться верной. Возможно, метеориты были чем-то вроде шрапнели, образовавшейся в ходе планетарного катаклизма и долетевшей до Земли. Впридачу некоторые астрономы, оказывается, уже сообщали об изменениях в яркости астероидов: эти изменения могли свидетельствовать о том, что у малых планет неправильная форма. Если они и вправду были кусками разрушенной планеты, то вполне естественно, что они представляли собой обломки, которые, беспорядочно вертясь в процессе орбитального движения, неравномерно отражают падающий на них солнечный свет.

Новых астероидов не открывали почти сорок лет. Но между 1845 и 1855 годами произошел настоящий бум: в каталоги было внесено еще тридцать три астероида. Теперь их общее число составляло тридцать семь. Еще через десять лет их стало уже восемьдесят пять. Теперь большинство людей понимают, что такого количества обычных планет существовать не может. Термин «астероид» стал общепринятым и проник в разговорную речь. Пространство между орбитами Марса и Юпитера стали называть «поясом астероидов»: оказалось, что астероиды образуют обширную зону каменных обломков, обращающихся вокруг Солнца. Пояс астероидов расположен на расстоянии примерно от 2 до 4 а.е. от Солнца, а его ширина – почти 300 миллионов километров – вдвое больше расстояния между Солнцем и Землей. Так орбита «недостающей планеты» превратилась в обширное межпланетное поле, населенное астероидами.

Примечательные разрывы

По мере того как открывались все новые и новые астероиды и вычислялись их орбиты, появилась возможность исследовать структурные детали пояса астероидов. Американский астроном Дэниэл Кирквуд в 1866 году описал «примечательные разрывы» – замеченные им концентрические зоны, в которых астероиды не появлялись. Эти промежутки были в его честь названы «люками Кирквуда». Таким образом, пояс астероидов был не просто хаотическим кольцом обломков, обращающихся вокруг Солнца: он состоял из ряда концентрических колец. Кирквуд правильно объяснил природу этих промежутков гравитационными взаимодействиями астероидов с крупнейшей планетой Солнечной системы – Юпитером. В процессе сложного «танца» астероидов вокруг Солнца в сочетании с «танцами» планет, определенные области пояса оказываются в «орбитальном резонансе» с Юпитером. Согласно открытому Ньютоном закону всемирного тяготения, скорость, с которой движется по своей орбите вокруг Солнца планета, астероид или комета, зависит от расстояния между этим небесным телом и Солнцем. Чем дальше от Солнца находится орбита, тем медленнее движется по ней тело. Орбитальные резонансы в поясе астероидов возникают, когда отношение периодов обращения астероида и Юпитера может быть выражено целым числом.

Представьте себе Солнечную систему в виде циферблата, в центре которого находится Солнце, а планеты и астероиды обращаются вокруг него на разных расстояниях. И пусть орбита Юпитера очерчивает внешний край нашего циферблата. Теперь представьте астероид, орбита которого пролегает ближе к центру циферблата (то есть ближе к Солнцу): этот астероид будет совершать один оборот быстрее, чем Юпитер, расположенный дальше. Допустим, мы установили, что этот астероид совершает оборот вокруг центра часов (то есть один оборот по орбите вокруг Солнца) вдвое быстрее Юпитера. За один оборот Юпитера происходит два оборота астероида. Эта ситуация называется орбитальным резонансом 2:1. Тогда на каждом втором орбитальном обороте астероида и Юпитер, и астероид будут на циферблате одновременно на двенадцати часах. В этом положении мощное гравитационное поле Юпитера будет слегка подтаскивать астероид к планете, из-за чего его орбита будет становиться более эллиптической. За сотни тысяч оборотов влияние этих малых гравитационных толчков на двенадцати часах будет накапливаться, и резонанс выбросит астероид на хаотическую орбиту. Подобные резонансы (и, следовательно, разрывы в положениях орбит) образуются при отношениях периодов обращения 3:1, 5:2, 7:2 и 7:3.

Хаотические орбиты могут привести астероид в безопасное положение в более гравитационно устойчивой части пояса. А некоторые астероиды могут быть вообще выброшены из пояса – либо в сторону Солнца, во внутреннюю часть Солнечной системы, либо вовне, в ее ледяные периферийные области. В результате изменения орбит между астероидами могут происходить и катастрофические столкновения с образованием роев мелких обломков – «шрапнели». Но какова бы ни была их дальнейшая судьба, все астероиды, обнаруживаемые внутри областей орбитального резонанса, обречены на то, чтобы быстро эту область покинуть. Поэтому в поясе и образуются разрывы, пустоты, в которых астероидов почти не встречается.

Орбитальные резонансы, создающие пустоты в астероидном поясе, обеспечивают условия, при которых астероиды и их мелкие обломки могут сталкиваться и уходить в другие области Солнечной системы. И если в результате этих возмущений орбита астероида или обломка пересекает орбиту Земли, появляется потенциальная возможность захвата этого тела Землей при ее движении вокруг Солнца. Ученые XIX века не сбрасывали со счетов заманчивое предположение, что метеориты могут оказаться именно такими фрагментами пояса астероидов.

Астероидная шрапнель

Пока астрономы глядели вверх в свои телескопы, геологи смотрели вниз: в окуляры микроскопов. В середине XIX века французский геолог Адольф Буасс думал, что он нашел доказательство происхождения метеоритов из обломков планеты, что соответствовало астероидной гипотезе. Он расположил данные об упавших метеоритах в порядке убывания их плотности, так, что получившаяся последовательность напоминала внутреннее строение планеты, похожей на Землю: железные метеориты в центре, представляющем собой металлическое ядро, выше – гибридные железокаменные, а затем каменные метеориты, соответствующие внешней каменной мантии и коре. Сходство состава метеоритов с составом слоев большой планеты было веским физическим доказательством того, что астероиды действительно являются частями фрагментированной планеты и что метеориты происходят из них.

Однако очень важный вопрос по-прежнему оставался нерешенным. Хладни когда-то уже указывал в своих «Железных массах», что скорость, с какой болиды и метеоры проносятся по небу, исключает возможность их возникновения в Солнечной системе: он (а вслед за ним и другие) считал, что для того, чтобы двигаться с такой скоростью, они должны образовываться в межзвездном пространстве. Это противоречило гипотезе астероидного происхождения метеоритов. Хотя научное сообщество с самого начала приняло идею, что болиды и метеориты – это камни, влетающие в земную атмосферу из космического пространства, и что некоторые из них переживают свой огненный спуск и долетают до земной поверхности, проблеме определения точного места их рождения суждено было решиться только в середине XX столетия.

На протяжении 1930-х и 1940-х исследователи сосредоточили свои усилия на том, чтобы фотографически зарегистрировать вход болидов в атмосферу и тем самым лучше понять траекторию их полета в космическом пространстве. Точное определение траектории позволило бы вычислить их скорости и орбиты, а значит, решить, наконец, являются ли метеориты межзвездными объектами или родились внутри Солнечной системы. Но зарегистрировать болид с помощью камеры – вопрос везения. Удачного случая приходится дожидаться долго. И терпение астрономов было вознаграждено. В обсерваториях Соединенных Штатов в конце концов были получены (с длинными экспозициями) фотографии пролетающих болидов. Вычисления, основанные на измеренных скоростях и направлениях входа болидов в атмосферу, показали: эти болиды произошли из камней, двигавшихся по околосолнечным орбитам. Они родились не в межзвездном, а в межпланетном пространстве – здесь, в нашей Солнечной системе.

К середине 1950-х, в разгар холодной войны, Чехословакия, как и многие другие страны, создала сеть фотографических станций слежения за небом, чтобы регистрировать траектории движения искусственных спутников. Непрерывный мониторинг космического пространства был вопросом национальной безопасности. В апреле 1959 года несколько камер станции слежения в Пршибраме, маленьком чешском городке в сорока пяти километрах к юго-западу от Праги, одновременно зафиксировали пролет болида. Этот болид видело и множество людей – он был заметен на площади почти в восемь тысяч квадратных километров и, падая, ярко осветил все ночное небо. Впервые в истории болид был фотографически зарегистрирован более чем одной камерой. Поскольку входная траектория болида была снята под разными углами, ее смогли измерить методом триангуляции и вычислить с высокой точностью. Это позволило предсказать и место падения метеорита. Предсказание оказалось точным: через пару недель был найден дочерна обуглившийся каменный метеорит размером с большое яблоко. Еще три фрагмента того же метеорита были найдены в последующие месяцы: камень, пролетая сквозь атмосферу, развалился на части.

Но траекторию камня удалось вычислить не только после, но и до его входа в атмосферу. На основании измеренных скорости и направления полета болида был определен путь камня в космосе: он приблизился

к Земле по сильно вытянутой эллиптической орбите, пересекающей земную. Метеорит Пршибрам прилетел из внешней части пояса астероидов. Это было первое прямое доказательство того, что небесные камни действительно происходят из пояса астероидов между орбитами Марса и Юпитера.

За десятилетия слежения за небом при помощи сети фотографических камер, разбросанных по всему земному шару, и развития методов восстановления орбит болидов в космическом пространстве, из измерений скорости и направления входа болидов в земную атмосферу удалось точно рассчитать еще много орбит метеоритов, в том числе таких как Иннисфри, который упал в Альберте (Канада) в 1977 году, Моравка – в Чехии в 2000-м и Парк Форест – в Иллинойсе (США) в 2003 году. Каждый из них, как и Пршибрам, был зарегистрирован фотографически; в каждом случае удалось собрать упавшие обломки. Фрагмент метеорита Моравка размером с яблоко исключительно удачно угодил прямо в елку, выросшую рядом с чьим-то домом.

Астероидов, которые могут прилетать к нам в виде метеоритов, великое множество. С тех пор как Пьяцци в 1801 году случайно открыл Цереру, в поясе астероидов были обнаружены и внесены в каталог сотни тысяч объектов. Церера оказалась не только первым открытым, но и самым большим астероидом, заметно крупнее всех остальных: ее поперечник чуть меньше 1 000 километров, то есть она размером с Британию. Паллада и Веста обе имеют поперечник около 500 километров – примерно с Англию. Согласно оценкам, существует от одного до двух миллионов астероидов размером больше километра, и нам еще очень далеко до того, чтобы нанести их все на карту неба. Однако крупные астероиды составляют скорее исключение, чем правило, – они встречаются тем реже, чем они крупнее. Вероятно, число астероидов размерами менее километра составляет многие миллиарды; при этом нижней границы их размера не существует – от метра и меньше.

Бесшумно обращаясь вокруг Солнца, астероиды сталкиваются и при этом разлетаются на несущиеся с большой скоростью обломки либо же забредают на орбиты, слишком близкие к одному из люков Кирквуда с их гравитационными резонансами. И в том, и в другом случае они или их фрагменты могут оказаться во внутренней части Солнечной системы. Множество таких камней летит сквозь межпланетное пространство. Большая часть из тех, что пересекают орбиту Земли, – крохотные тела размером от пылинки до фасолины; пролетая сквозь земную атмосферу, они полностью сгорают. Однако в долгой истории камней большего размера, если они выживают после своего огненного полета и оказываются на поверхности Земли, открывается новая глава. Большинство метеоритов так и остаются необнаруженными и по прошествии геологического времени сливаются с веществом Земли. И лишь крошечная их часть становится достоянием любопытных земных обитателей.

Благодаря метеоритам мы узнали множество мельчайших подробностей об астероидах, которые эти метеориты породили. Из слабых звездообразных точек на небе малые планеты превратились в миры со своей историей, в хранилище полезных сведений. Ведь в них скрыта информация о самом раннем этапе истории Солнечной системы, рассказ о том, как собрать из ничего планетную систему и какие ингредиенты нужны, чтобы создать новые миры.

Большая часть дальнейшего содержания этой книги связана с удивительными историями происхождения небесных камней. Но прежде чем мы углубимся в первые страницы истории нашей Солнечной системы, мы должны поговорить о поисках метеоритов.

1.Это не совсем так. Все звезды на небе непрерывно движутся относительно друг друга, но так медленно, что от ночи к ночи это почти не заметно.
Yaş sınırı:
12+
Litres'teki yayın tarihi:
16 mart 2023
Çeviri tarihi:
2023
Yazıldığı tarih:
2020
Hacim:
327 s. 12 illüstrasyon
ISBN:
978-5-04-185385-3
Yayıncı:
Telif hakkı:
Эксмо
İndirme biçimi:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

Bu kitabı okuyanlar şunları da okudu