Читайте только на Литрес

Kitap dosya olarak indirilemez ancak uygulamamız üzerinden veya online olarak web sitemizden okunabilir.

Kitabı oku: «De l'origine des espèces», sayfa 48

Yazı tipi:

MORPHOLOGIE

Nous avons vu que les membres de la même classe, indépendamment de leurs habitudes d'existence, se ressemblent par le plan général de leur organisation. Cette ressemblance est souvent exprimée par le terme d'unité de type, c'est-à-dire que chez les différentes espèces de la même classe les diverses parties et les divers organes sont homologues. L'ensemble de ces questions prend le nom général de morphologie et constitue une des parties les plus intéressantes de l'histoire naturelle, dont elle peut être considérée comme l'âme. N'est-il pas très remarquable que la main de l'homme faite pour saisir, la griffe de la taupe destinée à fouir la terre, la jambe du cheval, la nageoire du marsouin et l'aile de la chauve-souris, soient toutes construites sur un même modèle et renferment des os semblables, situés dans les mêmes positions relatives? N'est-il pas extrêmement curieux, pour donner un exemple d'un ordre moins important, mais très frappant, que les pieds postérieurs du kangouroo, si bien appropriés aux bonds énormes que fait cet animal dans les plaines ouvertes; ceux du koala, grimpeur et mangeur de feuilles, également bien conformés pour saisir les branches; ceux des péramèles qui vivent dans des galeries souterraines et qui se nourrissent d'insectes ou de racines, et ceux de quelques autres marsupiaux australiens, soient tous construits sur le même type extraordinaire, c'est-à-dire que les os du second et du troisième doigt sont très minces et enveloppés dans une même peau, de telle sorte qu'ils ressemblent à un doigt unique pourvu de deux griffes? Malgré cette similitude de type, il est évident que les pieds postérieurs de ces divers animaux servent aux usages les plus différents que l'on puisse imaginer. Le cas est d'autant plus frappant que les opossums américains, qui ont presque les mêmes habitudes d'existence que certains de leurs parents australiens, ont les pieds construits sur le plan ordinaire. Le professeur Flower, à qui j'ai emprunté ces renseignements, conclut ainsi: «On peut appliquer aux faits de ce genre l'expression de conformité au type, sans approcher beaucoup de l'explication du phénomène;» puis il ajoute: «Mais ces faits n'éveillent-ils pas puissamment l'idée d'une véritable parenté et de la descendance d'un ancêtre commun?»

Geoffroy Saint-Hilaire a beaucoup insisté sur la haute importance de la position relative ou de la connexité des parties homologues, qui peuvent différer presque à l'infini sous le rapport de la forme et de la grosseur, mais qui restent cependant unies les unes aux autres suivant un ordre invariable. Jamais, par exemple, on n'a observé une transposition des os du bras et de l'avant-bras, ou de la cuisse et de la jambe. On peut donc donner les mêmes noms aux os homologués chez les animaux les plus différents. La même loi se retrouve dans la construction de la bouche des insectes; quoi de plus différent que la longue trompe roulée en spirale du papillon sphinx, que celle si singulièrement repliée de l'abeille ou de la punaise, et que les grandes mâchoires d'un coléoptère? Tous ces organes, cependant, servant à des usages si divers, sont formés par des modifications infiniment nombreuses d'une lèvre supérieure, de mandibules et de deux paires de mâchoires. La même loi règle la construction de la bouche et des membres des crustacés. Il en est de même des fleurs des végétaux.

Il n'est pas de tentative plus vaine que de vouloir expliquer cette similitude du type chez les membres d'une classe par l'utilité ou par la doctrine des causes finales. Owen a expressément admis l'impossibilité d'y parvenir dans son intéressant ouvrage sur la Nature des membres. Dans l'hypothèse de la création indépendante de chaque être, nous ne pouvons que constater ce fait en ajoutant qu'il a plu au Créateur de construire tous les animaux et toutes les plantes de chaque grande classe sur un plan uniforme; mais ce n'est pas là une explication scientifique.

L'explication se présente, au contraire, d'elle-même, pour ainsi dire, dans la théorie de la sélection des modifications légères et successives, chaque modification étant avantageuse en quelque manière à la forme modifiée et affectant souvent par corrélation d'autres parties de l'organisation. Dans les changements de cette nature, il ne saurait y avoir qu'une bien faible tendance à modifier le plan primitif, et aucune à en transposer les parties. Les os d'un membre peuvent, dans quelque proportion que ce soit, se raccourcir et s'aplatir, ils peuvent s'envelopper en même temps d'une épaisse membrane, de façon à servir de nageoire; ou bien, les os d'un pied palmé peuvent s'allonger plus ou moins considérablement en même temps que la membrane interdigitale, et devenir ainsi une aile; cependant toutes ces modifications ne tendent à altérer en rien la charpente des os ou leurs rapports relatifs. Si nous supposons un ancêtre reculé, qu'on pourrait appeler l'archétype de tous les mammifères, de tous les oiseaux et de tous les reptiles, dont les membres avaient la forme générale actuelle, quel qu'ait pu, d'ailleurs, être l'usage de ces membres, nous pouvons concevoir de suite la construction homologue, des membres chez tous les représentants de la classe entière. De même, à l'égard de la bouche des insectes; nous n'avons qu'à supposer un ancêtre commun pourvu d'une lèvre supérieure, de mandibules et de deux paires de mâchoires, toutes ces parties ayant peut-être une forme très simple; la sélection naturelle suffit ensuite pour expliquer la diversité infinie qui existe dans la conformation et les fonctions de la bouche de ces animaux. Néanmoins, on peut concevoir que le plan général d'un organe puisse s'altérer au point de disparaître complètement par la réduction, puis par l'atrophie complète de certaines parties, par la fusion, le doublement ou la multiplication d'autres parties, variations que nous savons être dans les limites du possible. Le plan général semble avoir été ainsi en partie altéré dans les nageoires des gigantesques lézards marins éteints, et dans la bouche de certains crustacés suceurs.

Il est encore une autre branche également curieuse de notre sujet: c'est la comparaison, non plus des mêmes parties ou des mêmes organes chez les différents membres d'une même classe, mais l'examen comparé des diverses parties ou des divers organes chez le même individu. La plupart des physiologistes admettent que les os du crâne sont homologues avec les parties élémentaires d'un certain nombre de vertèbres, c'est-à-dire qu'ils présentent le même nombre de ces parties dans la même position relative réciproque. Les membres antérieurs et postérieurs de toutes les classes de vertébrés supérieurs sont évidemment homologues. Il en est de même des mâchoires si compliquées et des pattes des crustacés. Chacun sait que, chez une fleur, on explique les positions relatives des sépales, des pétales, des étamines et des pistils, ainsi que leur structure intime, en admettant que ces diverses parties sont formées de feuilles métamorphosées et disposées en spirale. Les monstruosités végétales nous fournissent souvent la preuve directe de la transformation possible d'un organe en un autre; en outre, nous pouvons facilement constater que, pendant les premières phases du développement des fleurs, ainsi que chez les embryons des crustacés et de beaucoup d'autres animaux, des organes très différents, une fois arrivés à maturité, se ressemblent d'abord complètement.

Comment expliquer ces faits d'après la théorie des créations? Pourquoi le cerveau est-il renfermé dans une boîte composée de pièces osseuses si nombreuses et si singulièrement conformées qui semblent représenter des vertèbres? Ainsi que l'a fait remarquer Owen, l'avantage que présente cette disposition, en permettant aux os séparés de fléchir pendant l'acte de la parturition chez les mammifères, n'expliquerait en aucune façon pourquoi la même conformation se retrouve dans le crâne des oiseaux et des reptiles. Pourquoi des os similaires ont-ils été créés pour former l'aile et la jambe de la chauve-souris, puisque ces os sont destinés à des usages si différents, le vol et la marche? Pourquoi un crustacé, pourvu d'une bouche extrêmement compliquée, formée d'un grand nombre de pièces, a-t-il toujours, et comme une conséquence nécessaire, un moins grand nombre de pattes? et inversement pourquoi ceux qui ont beaucoup de pattes ont-ils une bouche plus simple? Pourquoi les sépales, les pétales, les étamines et les pistils de chaque fleur, bien qu'adaptés à des usages si différents, sont-ils tous construits sur le même modèle?

La théorie de la sélection naturelle nous permet, jusqu'à un certain point, de répondre à ces questions. Nous n'avons pas à considérer ici comment les corps de quelques animaux se sont primitivement divisés en séries de segments, ou en côtés droit et gauche, avec des organes correspondants, car ces questions dépassent presque la limite de toute investigation. Il est cependant probable que quelques conformations en séries sont le résultat d'une multiplication de cellules par division, entraînant la multiplication des parties qui proviennent de ces cellules. Il nous suffit, pour le but que nous nous proposons, de nous rappeler la remarque faite par Owen, c'est-à-dire qu'une répétition indéfinie de parties ou d'organes constitue le trait caractéristique de toutes les formes inférieures et peu spécialisées. L'ancêtre inconnu des vertébrés devait donc avoir beaucoup de vertèbres, celui des articulés beaucoup de segments, et celui des végétaux à fleurs de nombreuses feuilles disposées en une ou plusieurs spires; nous avons aussi vu précédemment que les organes souvent répétés sont essentiellement aptes à varier, non seulement par le nombre, mais aussi par la forme. Par conséquent, leur présence en quantité considérable et leur grande variabilité ont naturellement fourni les matériaux nécessaires à leur adaptation aux buts les plus divers, tout en conservant, en général, par suite de la force héréditaire, des traces distinctes de leur ressemblance originelle ou fondamentale. Ils doivent conserver d'autant plus cette ressemblance que les variations fournissant la base de leur modification subséquente à l'aide de la sélection naturelle, tendent dès l'abord à être semblables; les parties, à leur état précoce, se ressemblant et étant soumises presque aux mêmes conditions. Ces parties plus ou moins modifiées seraient sérialement homologues, à moins que leur origine commune ne fût entièrement obscurcie.

Bien qu'on puisse aisément démontrer dans la grande classe des mollusques l'homologie des parties chez des espèces distinctes, on ne peut signaler que peu d'homologies sériales telles que les valves des chitons; c'est-à-dire que nous pouvons rarement affirmer l'homologie de telle partie du corps avec telle autre partie du même individu. Ce fait n'a rien de surprenant; chez les mollusques, en effet, même parmi les représentants les moins élevés de la classe, nous sommes loin de trouver cette répétition indéfinie d'une partie donnée, que nous remarquons dans les autres grands ordres du règne animal et du règne végétal.

La morphologie constitue, d'ailleurs un sujet bien plus compliqué qu'il ne le paraît d'abord; c'est ce qu'a récemment démontré M. Ray-Lankester dans un mémoire remarquable. M. Lankester établit une importante distinction entre certaines classes de faits que tous les naturalistes ont considérés comme également homologues. Il propose d'appeler structures homogènes les structures qui se ressemblent chez des animaux distincts, par suite de leur descendance d'un ancêtre commun avec des modifications subséquentes, et les ressemblances qu'on ne peut expliquer ainsi, ressemblances homoplastiques. Par exemple, il croit que le coeur des oiseaux et des mammifères est homogène dans son ensemble, c'est-à-dire qu'il provient d'un ancêtre commun; mais que les quatre cavités du coeur sont, chez les deux classes, homoplastiques, c'est-à-dire qu'elles se sont développées indépendamment. M. Lankester allègue encore l'étroite ressemblance des parties situées du côté droit et du côté gauche du corps, ainsi que des segments successifs du même individu; ce sont là des parties ordinairement appelées homologues, et qui, cependant, ne se rattachent nullement à la descendance d'espèces diverses d'un ancêtre commun. Les conformations homoplastiques sont celles que j'avais classées, d'une manière imparfaite, il est vrai, comme des modifications ou des ressemblances analogues. On peut, en partie, attribuer leur formation à des variations qui ont affecté d'une manière semblable des organismes distincts ou des parties distinctes des organismes, et, en partie, à des modifications analogues, conservées dans un but général ou pour une fonction générale. On en pourrait citer beaucoup d'exemples.

Les naturalistes disent souvent que le crâne est formé de vertèbres métamorphosées, que les mâchoires des crabes sont des pattes métamorphosées, les étamines et les pistils des fleurs des feuilles métamorphosées; mais, ainsi que le professeur Huxley l'a fait remarquer, il serait, dans la plupart des cas, plus correct de parler du crâne et des vertèbres, des mâchoires et des pattes, etc., comme provenant, non pas de la métamorphose en un autre organe de l'un de ces organes, tel qu'il existe, mais de la métamorphose de quelque élément commun et plus simple. La plupart des naturalistes, toutefois, n'emploient l'expression que dans un sens métaphorique, et n'entendent point par là que, dans le cours prolongé des générations, des organes primordiaux quelconques – vertèbres dans un cas et pattes dans l'autre – aient jamais été réellement transformés en crânes ou en mâchoires. Cependant, il y a tant d'apparences que de semblables modifications se sont opérées, qu'il est presque impossible d'éviter l'emploi d'une expression ayant cette signification directe. À mon point de vue, de pareils termes peuvent s'employer dans un sens littéral; et le fait remarquable que les mâchoires d'un crabe, par exemple, ont retenu de nombreux caractères; qu'elles auraient probablement conservés par hérédité si elles eussent réellement été le produit d'une métamorphose de pattes véritables, quoique fort simples, se trouverait en partie expliqué.

DÉVELOPPEMENT ET EMBRYOLOGIE

Nous abordons ici un des sujets les plus importants de toute l'histoire naturelle. Les métamorphoses des insectes, que tout le monde connaît, s'accomplissent d'ordinaire brusquement au moyen d'un petit nombre de phases, mais les transformations sont en réalité nombreuses et graduelles. Un certain insecte éphémère (Chlöeon), ainsi que l'a démontré Sir J. Lubbock, passe, pendant son développement par plus de vingt mues, et subit chaque fois une certaine somme de changements; dans ce cas, la métamorphose s'accomplit d'une manière primitive et graduelle. On voit, chez beaucoup d'insectes, et surtout chez quelques crustacés, quels étonnants changements de structure peuvent s'effectuer pendant le développement. Ces changements, toutefois, atteignent leur apogée dans les cas dits de génération alternante qu'on observe chez quelques animaux inférieurs. N'est-il pas étonnant, par exemple, qu'une délicate coralline ramifiée, couverte de polypes et fixée à un rocher sous-marin produise, d'abord par bourgeonnement et ensuite par division transversale, une foule d'énormes méduses flottantes? Celles-ci, à leur tour produisent des oeufs d'où sortent des animalcules doués de la faculté de nager; ils s'attachent aux rochers et se développent ensuite en corallines ramifiées; ce cycle se continue ainsi à l'infini. La croyance à l'identité essentielle de la génération alternante avec la métamorphose ordinaire a été confirmée dans une forte mesure par une découverte de Wagner; il a observé, en effet, que la larve de la cécidomye produit asexuellement d'autres larves. Celles-ci, à leur tour, en produisent d'autres, qui finissent par se développer en mâles et en femelles réels, propageant leur espèce de la façon habituelle, par des oeufs.

Je dois ajouter que, lorsqu'on annonça la remarquable découverte de Wagner, on me demanda comment il était possible de concevoir que la larve de cette mouche ait pu acquérir l'aptitude à une reproduction asexuelle. Il était impossible de répondre tant que le cas restait unique. Mais Grimm a démontré qu'une autre mouche, le chironome, se reproduit d'une manière presque identique, et il croit que ce phénomène se présente fréquemment dans cet ordre. C'est la chrysalide et non la larve du chironome qui a cette aptitude, et Grimm démontre, en outre, que ce cas relie jusqu'à un certain point, «celui de la cécidomye avec la parthénogénèse des coccidés», – le terme parthénogénèse impliquant que les femelles adultes des coccidés peuvent produire des oeufs féconds sans le concours du mâle. On sait actuellement que certains animaux, appartenant à plusieurs classes, sont doués de l'aptitude à la reproduction ordinaire dès un âge extraordinairement précoce; or, nous n'avons qu'à faire remonter graduellement la reproduction parthénogénétique à un âge toujours plus précoce – le chironome nous offre, d'ailleurs, une phase presque exactement intermédiaire, celle de la chrysalide – pour expliquer le cas merveilleux de la cécidomye.

Nous avons déjà constaté que diverses parties d'un même individu, qui sont identiquement semblables pendant la première période embryonnaire, se différencient considérablement à l'état adulte et servent alors à des usages fort différents. Nous avons démontré, en outre, que les embryons des espèces les plus distinctes appartenant à une même classe sont généralement très semblables, mais en se développant deviennent fort différents. On ne saurait trouver une meilleure preuve de ce fait que ces paroles de von Baer: «Les embryons des mammifères, des oiseaux, des lézards, des serpents, et probablement aussi ceux des tortues, se ressemblent beaucoup pendant les premières phases de leur développement, tant dans leur ensemble que par le mode d'évolution des parties; cette ressemblance est même si parfaite, que nous ne pouvons les distinguer que par leur grosseur. Je possède, conservés dans l'alcool, deux petits embryons dont j'ai omis d'inscrire le nom, et il me serait actuellement impossible de dire à quelle classe ils appartiennent. Ce sont peut-être des lézards, des petits oiseaux, ou de très jeunes mammifères, tant est grande la similitude du mode de formation de la tête et du tronc chez ces animaux. Il est vrai que les extrémités de ces embryons manquent encore; mais eussent-elles été dans la première phase de leur développement, qu'elles ne nous auraient rien appris, car les pieds des lézards et des mammifères, les ailes et les pieds des oiseaux, et même les mains et les pieds de l'homme, partent tous de la même forme fondamentale.» Les larves de la plupart des crustacés, arrivées à des périodes égales de développement, se ressemblent beaucoup, quelque différents que ces crustacés puissent devenir quand ils sont adultes; il en est de même pour beaucoup d'autres animaux. Des traces de la loi de la ressemblance embryonnaire persistent quelquefois jusque dans un âge assez avancé; ainsi, les oiseaux d'un même genre et de genres alliés se ressemblent souvent par leur premier plumage comme nous le voyons dans les plumes tachetées des jeunes du groupe des merles. Dans la tribu des chats, la plupart des espèces sont rayées et tachetées, raies et taches étant disposées en lignes, et on distingue nettement des raies ou des taches sur la fourrure des lionceaux et des jeunes pumas. On observe parfois, quoique rarement, quelque chose de semblable chez les plantes; ainsi, les premières feuilles de l'ajonc (ulex) et celles des acacias phyllodinés sont pinnées ou divisées comme les feuilles ordinaires des légumineuses.

Les points de conformation par lesquels les embryons d'animaux fort différents d'une même classe se ressemblent n'ont souvent aucun rapport avec les conditions d'existence. Nous ne pouvons, par exemple, supposer que la forme particulière en lacet qu'affectent, chez les embryons des vertébrés, les artères des fentes branchiales, soit en rapport avec les conditions d'existence, puisque la même particularité se remarque à la fois chez le jeune mammifère nourri dans le sein maternel, chez l'oeuf de l'oiseau couve dans un nid, ou chez le frai d'une grenouille qui se développe sous l'eau. Nous n'avons pas plus de motifs pour admettre un pareil rapport, que nous n'en avons pour croire que les os analogues de la main de l'homme, de l'aile de la chauve- souris ou de la nageoire du marsouin, soient en rapport avec des conditions semblables d'existence. Personne ne suppose que la fourrure tigrée du lionceau ou les plumes tachetées du jeune merle aient pour eux aucune utilité.

Le cas est toutefois différent lorsque l'animal, devenant actif pendant une partie de sa vie embryonnaire, doit alors pourvoir lui-même à sa nourriture. La période d'activité peut survenir à un âge plus ou moins précoce; mais, à quelque moment qu'elle se produise, l'adaptation de la larve à ses conditions d'existence est aussi parfaite et aussi admirable qu'elle l'est chez l'animal adulte. Les observations de sir J. Lubbock sur la ressemblance étroite qui existe entre certaines larves d'insectes appartenant à des ordres très différents, et inversement sur la dissemblance des larves d'autres insectes d'un même ordre, suivant leurs conditions d'existence et leurs habitudes, indiquent quel rôle important ont joué ces adaptations. Il résulte de ce genre d'adaptations, surtout lorsqu'elles impliquent une division de travail pendant les diverses phases du développement – quand la même larve doit, par exemple, pendant une phase de son développement, chercher sa nourriture, et, pendant une autre phase, chercher une place pour se fixer – que la ressemblance des larves d'animaux très voisins est fréquemment très obscurcie. On pourrait même citer des exemples de larves d'espèces alliées ou de groupes d'espèces qui diffèrent plus les unes des autres que ne le font les adultes. Dans la plupart des cas, cependant, les larves, bien qu'actives, subissent encore plus ou moins la loi commune des ressemblances embryonnaires. Les cirripèdes en offrent un excellent exemple; l'illustre Cuvier lui-même ne s'est pas aperçu qu'une balane est un crustacé, bien qu'un seul coup d'oeil jeté sur la larve suffise pour ne laisser aucun doute à cet égard. De même le deux principaux groupes des cirripèdes, les pédonculés et les sessiles, bien que très différents par leur aspect extérieur, ont des larves qu'on peut à peine distinguer les unes des autres pendant les phases successives de leur développement.

Dans le cours de son évolution, l'organisation de l'embryon s'élève généralement; j'emploie cette expression, bien que je sache qu'il est presque impossible de définir bien nettement ce qu'on entend par une organisation plus ou moins élevée. Toutefois, nul ne constatera probablement que le papillon est plus élevé que la chenille. Il y a néanmoins des cas où l'on doit considérer l'animal adulte comme moins élevé que sa larve dans l'échelle organique; tels sont, par exemple, certains crustacés parasites. Revenons encore aux cirripèdes, dont les larves, pendant la première phase du développement, ont trois paires de pattes, un oeil unique et simple, et une bouche en forme de trompe, avec laquelle elles mangent beaucoup, car elles augmentent rapidement en grosseur. Pendant la seconde phase, qui correspond à l'état de chrysalide chez le papillon, elles ont six paires de pattes natatoires admirablement construites, une magnifique paire d'yeux composés et des antennes très compliquées; mais leur bouche est très imparfaite et hermétiquement close, de sorte qu'elles ne peuvent manger. Dans cet état, leur seule fonction est de chercher, grâce au développement des organes des sens, et d'atteindre, au moyen de leur appareil de natation, un endroit convenable auquel elles puissent s'attacher pour y subir leur dernière métamorphose. Ceci fait, elles demeurent attachées à leur rocher pour le reste de leur vie; leurs pattes se transforment en organes préhensiles; une bouche bien conformée reparaît, mais elles n'ont plus d'antennes, et leurs deux yeux sont de nouveau remplacés par un seul petit oeil très simple, semblable à un point. Dans cet état complet, qui est le dernier, les cirripèdes peuvent être également considérés comme ayant une organisation plus ou moins élevée que celle qu'ils avaient à l'état de larve. Mais, dans quelques genres, les larve se transforment, soit en hermaphrodites présentant la conformation ordinaire, soit en ce que j'ai appelé des mâles complémentaires; chez ces derniers, le développement est certainement rétrograde, car ils ne constituent plus qu'un sac, qui ne vit que très peu de temps, privé qu'il est de bouche, d'estomac et de tous les organes importants, ceux de la reproduction exceptés.

Nous sommes tellement habitués à voir une différence de conformation entre l'embryon et l'adulte, que nous sommes disposés à regarder cette différence comme une conséquence nécessaire de la croissance. Mais il n'y a aucune raison pour que l'aile d'une chauve-souris, ou les nageoires d'un marsouin, par exemple, ne soient pas esquissées dans toutes leurs parties, et dans les proportions voulues, dès que ces parties sont devenues visibles dans l'embryon. Il y a certains groupes entiers d'animaux et aussi certains membres d'autres groupes, chez lesquels l'embryon à toutes les périodes de son existence, ne diffère pas beaucoup de la forme adulte. Ainsi Owen a remarqué que chez la seiche «il n'y a pas de métamorphose, le caractère céphalopode se manifestant longtemps avant que les divers organes de l'embryon soient complets.» Les coquillages terrestres et les crustacés d'eau douce naissent avec leurs formes propres, tandis que les membres marins des deux mêmes grandes classes subissent, dans le cours de leur développement, des modifications considérables. Les araignées n'éprouvent que de faibles métamorphoses. Les larves de la plupart des insectes passent par un état vermiforme, qu'elles soient actives et adaptées à des habitudes diverses, ou que, placées au sein de la nourriture qui leur convient, ou nourries par leurs parents, elles restent inactives. Il est cependant quelques cas, comme celui des aphis, dans le développement desquels, d'après les beaux dessins du professeur Huxley, nous ne trouvons presque pas de traces d'un état vermiforme.

Parfois, ce sont seulement les premières phases du développement qui font défaut. Ainsi Fritz Müller a fait la remarquable découverte que certains crustacés, alliés aux Penoeus, et ressemblant à des crevettes, apparaissent d'abord sous la forme simple de Nauplies, puis, après avoir passé par deux ou trois états de la forme Zoé, et enfin par l'état de Mysis, acquièrent leur conformation adulte. Or, dans la grande classe des malacostracés, à laquelle appartiennent ces crustacés, ou ne connaît aucun autre membre qui se développe d'abord sous la forme de nauplie, bien que beaucoup apparaissent sous celle de zoé; néanmoins, Müller donne des raisons de nature à faire croire que tous ces crustacés auraient apparu comme nauplies, s'il n'y avait pas eu une suppression de développement.

Comment donc expliquer ces divers faits de l'embryologie? Comment expliquer la différence si générale, mais non universelle, entre la conformation de l'embryon et celle de l'adulte; la similitude, aux débuts de l'évolution, des diverses parties d'un même embryon, qui doivent devenir plus tard entièrement dissemblables et servir à des fonctions très diverses; la ressemblance générale, mais non invariable, entre les embryons ou les larves des espèces les plus distinctes dans une même classe; la conservation, chez l'embryon encore dans l'oeuf ou dans l'utérus, de conformations qui lui sont inutiles à cette période aussi bien qu'à une période plus tardive de la vie; le fait que, d'autre part, des larves qui ont à suffire à leurs propres besoins s'adaptent parfaitement aux conditions ambiantes; enfin, le fait que certaines larves se trouvent placées plus haut sur l'échelle de l'organisation que les animaux adultes qui sont le terme final de leurs transformations? Je crois que ces divers faits peuvent s'expliquer de la manière suivante.

On suppose ordinairement, peut-être parce que certaines monstruosités affectent l'embryon de très bonne heure, que les variations légères ou les différences individuelles apparaissent nécessairement à une époque également très précoce. Nous n'avons que peu de preuves sur ce point, mais les quelques-unes que nous possédons indiquent certainement le contraire; il est notoire, en effet, que les éleveurs de bétail, de chevaux et de divers animaux de luxe, ne peuvent dire positivement qu'un certain temps après la naissance quelles seront les qualités ou les défauts d'un animal. Nous remarquons le même fait chez nos propres enfants; car nous ne pouvons dire d'avance s'ils seront grands ou petits, ni quels seront précisément leurs traits. La question n'est pas de savoir à quelle époque de la vie chaque variation a pu être causée, mais à quel moment s'en manifestent les effets. Les causes peuvent avoir agi, et je crois que cela est généralement le cas, sur l'un des parents ou sur tous deux, avant l'acte de la génération. Il faut remarquer que tant que le jeune animal reste dans le sein maternel ou dans l'oeuf, et que tant qu'il est nourri et protégé par ses parents, il lui importe peu que la plupart de ses caractères se développent un peu plus tôt ou un peu plus tard. Peu importe, en effet, à un oiseau auquel, par exemple, un bec très recourbé est nécessaire pour se procurer sa nourriture, de posséder ou non un bec de cette forme, tant qu'il est nourri par ses parents.

J'ai déjà fait observer, dans le premier chapitre, que toute variation, à quelque période de la vie qu'elle puisse apparaître chez les parents, tend à se manifester chez les descendants à l'âge correspondant. Il est même certaines variations qui ne peuvent apparaître qu'à cet âge correspondant; tels sont certains caractères de la chenille, du cocon ou de l'état de chrysalide chez le ver à soie, ou encore les variations qui affectent les cornes du bétail. Mais les variations qui, autant que nous pouvons en juger, pourraient indifféremment se manifester à un âge plus ou moins précoce, tendent cependant à reparaître également chez le descendant à l'âge où elles se sont manifestées chez le parent. Je suis loin de vouloir prétendre qu'il en soit toujours ainsi, car je pourrais citer des cas nombreux de variations, ce terme étant pris dans son acception la plus large, qui se sont manifestées à un âge plus précoce chez l'enfant que chez le parent.

Yaş sınırı:
12+
Litres'teki yayın tarihi:
28 eylül 2017
Hacim:
870 s. 1 illüstrasyon
Telif hakkı:
Public Domain