Kitabı oku: «Биохакинг», sayfa 4

Yazı tipi:

Строение и функции пищеварительной системы

Пищеварительная система состоит из органов, функции которых включают в себя переваривание пищи, всасывание нутриентов, выведение продуктов распада и формирование фекальных масс.

Пищеварительный тракт идет от ротовой полости до анального отверстия. Наиболее функционально важные части – пищевод (в верхнем отделе пищеварительной системы), желудок, двенадцатиперстная кишка, тощая кишка, подвздошная кишка, толстая кишка (в среднем отделе) и ее часть – прямая кишка (в нижнем отделе). Пищеварительная система также включает в себя слюнные железы, поджелудочную железу, печень, селезенку и желчный пузырь, играющие свою роль в пищеварении.



Главная функция пищеварительной системы – расщепление пищи и всасывание нутриентов в кровь (в тонкой кишке). Пищеварение можно упрощенно разделить на две функциональные стадии: механическое пищеварение (пища измельчается с помощью жевания) и химическое пищеварение (ферменты расщепляют пищу на молекулы).

Важность жевания для всасывания нутриентов часто недооценивают. Благодаря медленному потреблению пищи и тщательному пережевыванию растет чувство насыщения и улучшается всасывание нутриентов66.

Другая важная функция пищеварительной системы – поддержание защитной системы организма против патогенов. Более подробно об этом – в разделе «Микробиом».




ЖЕЛУДОК

Желудок расположен между пищеводом и двенадцатиперстной кишкой в верхнем левом углу брюшной полости, непосредственно под диафрагмой. Желудок имеет два сфинктера, которые регулируют объем и движение его содержимого: кардиальный (нижний пищеводный) сфинктер и сфинктер привратника (пилорический)позволяют пищевым массам попадать в двенадцатиперстную кишку.

Объем пустого желудка взрослого – приблизительно 500 мл. После принятия пищи он обычно растягивается до 1 л67. Желудок вырабатывает желудочный сок, содержащий необходимые для пищеварения гормоны и ферменты, соляную кислоту для расщепления пищи и внутренний фактор (фактор Касла) – фермент, необходимый для усвоения витамина B1268.

Кислотность желудочного сока уничтожает содержащиеся в пище вредные микроорганизмы. Однако у многих наблюдается дефицит выработки соляной кислоты из-за стресса, плохого питания или вредных химических веществ69. Гипохлоргидрия (пониженный уровень соляной кислоты) связана с дефицитом питательных веществ, остеопорозом70, различными инфекциями71 и раком желудка. Длительный прием блокаторов кислоты может вызывать анемию72, дефицит витамина B1273 и избыточный рост желудочных и кишечных бактерий74.




ТОНКАЯ КИШКА

Тонкая кишка расположена между желудком и толстой кишкой. Она представляет собой витую рельефную структуру примерно 7 м в длину. Она расположена в брюшной полости и окружена толстой кишкой. Тонкая кишка состоит из двенадцатиперстной кишки, тощей кишки и подвздошной кишки.

Тонкая кишка получает частично переваренную пищу из пищевода и продолжает расщеплять ее составляющие. Процессу пищеварения способствуют желчь (образующаяся в печени, но поступающая через желчный пузырь) и панкреатический сок, который содержит большое количество пищеварительных ферментов.

Тонкая кишка расщепляет три основные группы нутриентов: белки, жиры и углеводы. Белки расщепляются на пептиды и аминокислоты. Жиры расщепляются на жирные кислоты и глицерол. Углеводы расщепляются на моносахариды (например, глюкозу), а крахмал – на олигосахариды. Расщепленные нутриенты всасываются через стенку кишечника. Благодаря структуре ворсинок и микроворсинок тонкого кишечника поверхность для всасывания нутриентов огромна – примерно с половину бадминтонной площадки75.




ТОЛСТАЯ КИШКА

Толстая кишка (примерно 1,5 м в длину) расположена между тонкой кишкой и анальным отверстием. Она состоит из слепой кишки, восходящей, поперечной, нисходящей и сигмовидной ободочных кишок, а также прямой кишки. Толстая кишка расположена в брюшной полости вокруг тонкой кишки.

Функции толстой кишки – поддержание бактериальной микрофлоры в кишечнике, а также всасывание воды и оставшихся нутриентов, прежде чем фекалии попадут дальше в прямую кишку. Всасываемые витамины включают в себя витамины группы K, тиамин (B1) и рибофлавин (B2)76.

Толстая кишка превращает переваренную пищу в каловые массы. Бактерии микрофлоры кишечника «питаются» клетчаткой из каловых масс и производят жирные кислоты, используемые как источник энергии (более подробно см. в разделе «Микробиом»)77. Бактерии также помогают выведению продуктов распада и токсинов.

Аппендикс расположен под слепой кишкой в толстом кишечнике. Он вырабатывает гормоны, регулирующие процесс пищеварения (пептиды)78. Аппендикс функционирует как хранилище для полезных бактерий79 и может защищать от некоторых инфекций80. В медицине бытует мнение, что аппендикс – орган рудиментарный и в случае аппендицита у взрослых может быть удален. Новейшие исследования показывают, что лечение антибиотиками зачастую столь же эффективно81.

Например, в Финляндии число воспалительных заболеваний кишечника (ВЗК) – язвенный колит и болезнь Крона – за последние 15 лет выросло почти в три раза82. Прослеживается связь между развитием воспалительных заболеваний кишечника и характерным для западного мира рационом питания с большим количеством продуктов промышленного производства83. Эти заболевания могут развиваться на фоне генетической предрасположенности (изменения бактериальной микрофлоры кишечника и нарушения иммунного ответа). Согласно последнему исследованию, ВЗК84 также связаны с синдромом «дырявого кишечника» и внешними факторами (например, с инфекцией85).

При восстановлении после болезни следует перейти на рацион питания, исключающий потенциально опасные для кишечника антинутриенты (подробнее см. раздел «Антинутриенты») и уменьшающий воспаление86. Особо подчеркивается в новейших исследованиях роль глютена87 в развитии ВЗК и его генетическая связь с целиакией88. Согласно одному из сравнительно недавних исследований (2014), большинству пациентов с ВЗК идет на пользу исключение глютена из рациона89.


ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА

Поджелудочная железа расположена в брюшной полости (за желудком и рядом с селезенкой) и окружена двенадцатиперстной кишкой. Она соединена с тонким кишечником и желчным пузырем. У поджелудочной железы две разные функции: эндокринная часть, состоящая из многочисленных островков (2 % поджелудочной железы), секретирует гормоны – инсулин и глюкагон, а экзокринная часть (98 % поджелудочной железы) стимулирует процесс пищеварения.




ПЕЧЕНЬ

Печень расположена в правом верхнем углу брюшной полости, непосредственно под диафрагмой, справа от желудка. Под печенью находится желчный пузырь. У печени, в отличие от других внутренних органов, двойной источник кровоснабжения: через воротную вену и печеночные артерии. Это свидетельствует о важности печени для всей системы.

Печень также имеет систему желчевыводящих путей, которые собирают выделяемую ею желчь. Желчевыводящие пути, по которым желчь поступает из печени в желчный пузырь и двенадцатиперстную кишку, часто называют желчными протоками.

Основные функции печени90:

● Метаболизм углеводов:

– вырабатывает глюкозу из аминокислот, молочной кислоты и глицерина;

– расщепляет гликоген до глюкозы;

– образует гликоген из глюкозы.

● Метаболизм жиров:

– окисляет жирные кислоты, высвобождая энергию;

– вырабатывает в больших количествах холестерин, фосфолипиды и липопротеины (ЛПНП, ЛПВП, ЛПОНП).

● Метаболизм белков:

– расщепляет аминокислоты;

– превращает токсичный аммиак в мочевину (орнитиновый цикл);

– синтезирует белки плазмы крови (в том числе альбумин);

– синтезирует аминокислоты и превращает их в другие соединения.

● Секреция желчи.

● Синтез эритроцитов и коагулянтов.

● Запасание глюкозы (гликоген), жирорастворимых витаминов (A, D, K) и витамина B12, железа и меди.

Выводящая и защитная функции:

● расщепляет несколько гормонов (в том числе инсулин);

● расщепляет и нейтрализует токсины (детоксикация);

● выводит (с мочой) билирубин из эритроцитов.

За последние 40 лет смертность от заболеваний печени выросла втрое91. Тяжелая работа, алкоголь, нездоровое питание и другие сложности окружающей среды нередко ведут к нарушениям функции печени92. В частности, абдоминальное ожирение способствует развитию жирового гепатоза93. Некоторые медицинские препараты также играют существенную роль в развитии поражений печени. По различным данным, поражения печени вызывают свыше 900 препаратов. Половина всех случаев острой печеночной недостаточности вызваны медикаментами94. Некоторые растительные лекарственные препараты также могут причинять вред печени95.

ЗНАЕТЕ ЛИ ВЫ, ЧТО

ГЕПАТИТ C, ЖИРОВАЯ БОЛЕЗНЬ ПЕЧЕНИ (ЖИРОВОЙ ГЕПАТОЗ) И АЛКОГОЛИЗМ – САМЫЕ РАСПРОСТРАНЕННЫЕ ПРИЧИНЫ ЦИРРОЗА. ОТ 10 ДО 20 % СЕРЬЕЗНО ЗЛОУПОТРЕБЛЯЮЩИХ АЛКОГОЛЕМ ПОЛУЧАЮТ ЦИРРОЗ. ОТ ЗАБОЛЕВАНИЙ, ВЫЗВАННЫХ АЛКОГОЛЕМ, ЕЖЕГОДНО УМИРАЮТ ОКОЛО 88 ТЫСЯЧ ЧЕЛОВЕК. ЭТО ЧЕТВЕРТАЯ ПО ЧАСТОТЕ ПРИЧИНА СМЕРТНОСТИ В США96.

Печень обладает поразительной способностью к регенерации. Строго говоря, это единственный внутренний орган, который может так регенерировать. Даже если 75 % печени разрушено, ее функция может полностью восстановиться97. Питание способно помочь функционированию печени, а именно поддержать систему цитохрома P450, играющую ключевую роль в детоксикации печени. Эта система состоит из двух фаз (1 и 2)98.



ЖЕЛЧНЫЙ ПУЗЫРЬ

Желчный пузырь расположен под правой долей печени. Это небольшой орган, около 8 см в длину, а его основная функция – хранить желчь, секретируемую печенью. Проток желчного пузыря и печеночный проток соединяются, образуя общий желчный проток, который отводит желчь в тонкую кишку из Фатерова сосочка (области слияния с панкреатическим протоком)99.

В процессе пищеварения желчь секретируется из желчного пузыря в тонкую кишку. Желчь способствует образованию мицелл, необходимых для всасывания жиров. Желчь также играет важную роль во всасывании жирорастворимых витаминов (A, D, E и K) и переработке билирубина в организме100. Желчные кислоты действуют наподобие гормонов, участвуя в метаболизме (энергетический баланс, регуляция жирового метаболизма и гликемический контроль)101. Нарушение синтеза желчи и желчных кислот может привести к серьезным проблемам со здоровьем – например, избыточному весу и инсулинорезистентности102. Кроме того, из-за проблем с пищеварением или не слишком сбалансированной диеты в желчном пузыре могут образовываться камни. Так, нарушение синтеза солей желчных кислот в сочетании с высокохолестериновым рационом питания может спровоцировать образование камней в желчном пузыре103.

Факторы риска, способствующие образованию камней в желчном пузыре, это избыточный вес, быстрая потеря веса, запоры и недостаточное потребление клетчатки и нутриентов (фолатов, магния, кальция и витамина C)104105, 106.

Ингредиенты и соединения, стимулирующие синтез желчи и солей желчных кислот, а также циркуляцию желчи:

● растворимая клетчатка (например, из овса);

● фенольные соединения (например, из артишока);

● куркума;

● флавоноиды;

● апельсин;

● одуванчик;

● горькие травы.

ЖЕЛЧЕКАМЕННАЯ БОЛЕЗНЬ

В США желчекаменной болезнью страдает около 10–15 % взрослого населения. Это наиболее распространенное заболевание ЖКТ из требующих госпитализации: ежегодно выявляется около миллиона новых случаев заболевания и проводится порядка 800 тысяч операций по удалению камней. Многие люди не подозревают о наличии у себя камней в желчном пузыре – почти в половине случаев заболевание протекает бессимптомно. Камни обычно образуются из солей желчной кислоты и холестерина. В редких случаях это так называемые пигментные камни – из извести и желчных пигментов.

Микробиом – ключ к здоровому желудку

Микробиом – совокупность колоний симбиотических (обе стороны получают пользу друг от друга), условно-патогенных (только одна из сторон получает пользу от второй) и патогенных (вызывающих заболевание) микроорганизмов. Эти колонии существуют, к примеру, на поверхности кожи, на слизистой оболочке рта и кишечника, на конъюнктиве глаз.

ЗНАЕТЕ ЛИ ВЫ, ЧТО

ЛИШЬ 40–50 % ВАШИХ КЛЕТОК – «ЧЕЛОВЕЧЕСКИЕ»? ОСТАЛЬНЫЕ 50–60 % – ЭТО КЛЕТКИ БАКТЕРИЙ, ГРИБОВ И МИКРООРГАНИЗМОВ, ЖИВУЩИХ В ВАШЕМ ОРГАНИЗМЕ107. В СЛУЧАЕ С ГЕНАМИ РАЗНИЦА ГОРАЗДО СУЩЕСТВЕННЕЕ – НА КАЖДЫЙ ЧЕЛОВЕЧЕСКИЙ ГЕН ПРИХОДИТСЯ 100 ГЕНОВ МИКРООРГАНИЗМОВ108.

В кишечнике живет около 500–1000 различных видов бактерий. Самый распространенный вид бактерий в кишечнике – это бактероиды (Bacteroides), клостридии (Clostridium), фузобактерии (Fusobacterium), бифидобактерии (Bifidobacterium) и аккермании (Akkermansia muciniphila). Другие известные штаммы – эшерихия (Escherichia) и лактобактерии (Lactobacillus)109. Бифидобактерии и лактобактерии наиболее широко изучены110 и часто присутствуют в пробиотиках, но сейчас все большее значение уделяется балансу всей совокупности микробиома и поддержанию его разнообразия.

Функции бактерий в кишечнике – расщепление углеводов (брожение), которые организм не может переварить иначе. Благодаря этому образуются короткоцепочечные жирные кислоты – источники энергии в организме. Например, бутират используется поверхностными добавочными (слизистыми) клетками кишечника, пропионат – печенью, а ацетат – клетками мышц111.

Именно поэтому состояние кишечника также существенно влияет на выделение энергии. Бактериальная микрофлора кишечника способствует всасыванию витаминов группы К, B и определенных минералов (магний, кальций и железо), синтезу желчных кислот, а также помогает работе иммунной системы. Кроме того, она действует как защитный барьер против различных патогенов112.

АНТИБИОТИКИ ПОРАЖАЮТ БАКТЕРИАЛЬНУЮ МИКРОФЛОРУ КИШЕЧНИКА

Один курс приема антибиотиков может поразить 30 % бактериальной микрофлоры кишечника и нарушить бактериальный баланс на период от шести месяцев до двух лет113. Но, если в кишечник попадают такие патогенные бактерии, как сальмонелла (Salmonella), шигелла (Shigella), кампилобактер (Campylobacter) или иерсиния (Yersinia), антибиотики необходимы. Наряду с вирусами эти бактерии наиболее частые возбудители «диареи путешественников» и кишечных инфекций.

В зависимости от индивидуального баланса микрофлоры бесконтрольный прием антибиотиков может спровоцировать антибиотик-ассоциированную диарею114 и псевдомембранозный колит, вызванный бактерией Clostridium difficile115, а также избыточный рост других вредных бактерий116. Более активное применение антибиотиков также привело к развитию антибиотикорезистентных бактерий117.

ОСЬ КИШЕЧНИК – МОЗГ

Ось кишечник – мозг представляет собой неврологическую и биохимическую связь между энтеральной нервной системой кишечника и центральной нервной системой. Кишечный микробиом (бактериальная микрофлора) влияет на функционирование иммунной системы, нервной системы118, поведение119, стрессоустойчивость120, настроение121 и такие состояния, как тревожность и депрессия122. Именно в последние двадцать лет ученые пришли к пониманию важности кишечника для состояния мозга.



Исследователи из Алабамского университета, судя по всему, близки к прорыву в области изучения мозга. Согласно предварительному исследованию (2018), они обнаружили в мозге живые бактерии. Бактерии были преимущественно трех типов, свойственных кишечнику: фирмикуты (Firmicutes), протеобактерии (Proteobacteria) и бактероиды (Bacteroidetes). Это открытие еще предстоит повторить и подтвердить другим группам исследователей123.

Мозг сообщается с кишечником по двум автономным ветвям нервной системы: ГГНО (гипоталамо-гипофизарно-надпочечниковая ось) и ось симпатическая нервная система – надпочечники, регулирующая лимфатическую систему кишечника124.

Важно понимать постоянную природу сообщения между мозгом и кишечником, а также учитывать механизмы ее двусторонней регуляции. Вот, скажем, показательный пример – сильная эмоциональная реакция вызывает у человека ощущение «бабочек в животе»125. И наоборот, кишечник посылает мозгу информацию о съеденной пище и о том, как она влияет на кишечник.

Первые признаки нарушенной мозговой функции также могут отразиться на пищеварении: в таких случаях отмечаются нарушенная секреция панкреатических ферментов, слабая активность желчного пузыря и общий функциональный дисбаланс кишечника126.


ПОРОЧНЫЙ КРУГ

Двусторонняя природа сообщения между мозгом и кишечником способна привести к так называемому порочному кругу (circulus vitiosus).



Устойчивое воспалительное состояние или дисбаланс кишечника могут вызвать ухудшение связей между энтероцитами на поверхности кишечника, провоцируя кишечную проницаемость. Функциональные нарушения в работе мозга или вызванная стрессом гиперактивность симпатической нервной системы таким же образом угнетают функцию блуждающего нерва127. Это нарушает работу иммунной системы и ухудшает циркуляцию крови в кишечнике, что, в свою очередь, повышает разрастание вредоносных кишечных бактерий и грибков128. Они могут повредить поверхностный слой слизистой и усугубить проницаемость кишечника (синдром «дырявого кишечника»)129,130.



Устойчивое неспецифическое воспаление в организме также может усугубить проницаемость кишечника131,132. Это приводит к выбросу цитокинов (медиаторов воспаления) в кишечнике133. Из-за проницаемости кишечника вещества-медиаторы могут проникать в кровоток и в мозг через гематоэнцефалический барьер (ГЭБ). Воспаление делает проницаемым и ГЭБ, что, в свою очередь, активизирует клетки соединительной ткани мозга, также известные как микроглия134. Результат – хроническое воспалительное состояние мозга, которое нарушает функцию мозга и может вызывать тревогу и депрессию135. Это замыкает порочный круг, и ситуация будет только ухудшаться, если не принять меры по ее исправлению (как, например, предложенные в настоящей книге).





Гиперчувствительность и токсины

Ингредиенты влияют на пищеварительную систему как положительно, так и отрицательно. Аллергенные продукты питания, природные или искусственные токсины в пище и реакция на пищу кишечных бактерий – все это проверка на прочность. С другой стороны, многие ингредиенты снижают воспалительную реакцию кишечника, облегчают процесс пищеварения и поставляют вещества, необходимые для регенерации тканей.

ПРОДУКТЫ, ВЫЗЫВАЮЩИЕ АЛЛЕРГИЮ И ГИПЕРЧУВСТВИТЕЛЬНОСТЬ

Пищевая аллергия – это враждебная реакция иммунитета на определенный белок в пище. Иммунная система воспринимает чужеродный белок как вредоносный, вызывая быструю реакцию антител. Среди факторов, повышающих вероятность аллергии, – бесконтрольный прием антибиотиков в раннем детстве136, аллергенный рацион матери137, определенные вакцины138,139 (и особенно входящие в их состав адъюванты140), а также различные химикаты, например пестициды, содержащие дихлорфенол141.

Продукты, наиболее часто вызывающие аллергические реакции, – это орехи (древесные), молочные продукты, злаковые, яйца, рыба и морепродукты, а также арахис, соя и другие бобовые. Вышеупомянутые продукты – 90 % всех пищевых аллергенов. Пищевые аллергии часто обнаруживаются в детстве и с возрастом могут пройти. Аллергические реакции на пищу часто протекают быстро и интенсивно в отличие от реакций гиперчувствительности, симптомы которых слабее и разнообразнее142.

Типичные аллергические реакции на пищу:

● крапивница;

● зуд;

● опасные для жизни реакции – отек Квинке, анафилактический шок;

● «текущий» или заложенный нос;

● чихание;

● тошнота и рвота;

● боль в животе.



Причины реакций гиперчувствительности к пище143:

● пищевая мальабсорбция;

● общие расстройства пищеварения;

● повышенная проницаемость кишечника;

● иммунологические реакции (иммуноглобулины);

● токсины (пищевые добавки и природные вещества)144;

● психологические реакции (в т. ч. при синдроме раздраженного кишечника).

Гиперчувствительность к пище может также быть вызвана гистамином, тирамином или другими биогенными аминами в пище (шоколад, красное вино, тунец или ферментированные ингредиенты – скажем, сыр). Иногда пища (например, помидор или ананас) может высвобождать в организме гистамин. Это называется синдромом непереносимости гистамина (СНГ)145. При СНГ обычно низкий уровень диаминовой оксидазы – фермента, отвечающего за метаболизм гистамина в организме146.

На это стоит обратить внимание, если анализы не показывают явную первопричину, а симптомы все равно присутствуют. Обычно гистамин повышает частоту пульса и вызывает заложенность носа и покраснение кожи.

Гистамин также может вызывать кишечные (диарея, боль в животе) и неврологические (головокружение и головные боли) симптомы. Тирамин может спровоцировать приступ мигрени147. Острые гистаминовые реакции можно предотвратить, приняв антигистаминные или ферментные препараты с диаминовой оксидазой.



Продукты, богатые гистамином или другими вазоактивными аминами:

● вино, алкогольный сидр, пиво и другие ферментированные алкогольные напитки;

● ферментированные продукты (квашеная капуста, винный уксус, соевый соус, кефир, йогурт, комбуча);

● выдержанные сыры;

● переработанное мясо (сосиски, ветчина, салями, бекон);

● копченые продукты животного происхождения;

● сухофрукты;

● орехи (грецкий орех, кешью, арахис);

● дрожжи (стимулируют выработку гистамина в пище);

● продукты из пшеницы;

● баклажан, шпинат и помидоры;

● отдельные виды рыбы: скумбрия, тунец, анчоусы и сардины.



Продукты, выбрасывающие в организм гистамин:

● банан;

● шоколад и какао;

● коровье молоко;

● папайя;

● ананас;

● цитрусовые;

● клубника;

● орехи;

● помидоры;

● шпинат;

● свинина;

● яичный белок (сырой);

● пищевые добавки.

Блокаторы диаминовой оксидазы148:

● алкоголь;

● черный чай;

● энергетики;

● зеленый чай;

● мате.

ТОКСИНЫ

Многие продукты питания содержат не только полезные соединения – витамины, минералы, микроэлементы и жирные кислоты, но и ненужные или даже вредные – токсины. Вызывают они болезненные проявления или нет, зависит от природы токсинов, их уровня в растительном продукте и индивидуальной чувствительности. Соответствующие методы обработки способны снизить уровень вредных веществ. Пример: грибы строчки содержат гиромитрин – опасный цитотоксин, однако он растворяется в воде, и его легко устранить при помощи бланширования. Таким образом, от природных токсинов в пище можно избавиться, тщательно выбирая и как следует обрабатывая продукты.

Пестициды используются в пищевой промышленности для профилактики заболеваний у растений, борьбы с вредителями (сорняки, насекомые и клещи), а также как регуляторы роста.

Токсины, оказывающие негативное влияние на организм:

● тяжелые металлы;

● диоксины и ПХБ-соединения;

● оловоорганические соединения, например ПВХ;

● микропластик;

● выбросы летучих органических соединений (ЛОС);

● радиоактивные соединения;

● микотоксины;

● канцерогены;

● ксеноэстрогены, имитирующие действие эстрогена;

● антинутриенты;

● определенные пестициды;

● определенные удобрения;

● медикаментозные отходы;

● другие вредные органические соединения.


66.Andrade, A. & Greene, G. & Melanson, K. (2008). Eating slowly led to decreases in energy intake within meals in healthy women. Journal of the Academy of Nutrition and Dietetics 108 (7): 1186–1191.
67.King, B. & Townsend-Nicholson, A. (2008). Involvement of P2Y1 and P2Y11 purinoceptors in parasympathetic inhibition of colonic smooth muscle. Journal of Pharmacology and Experimental Therapeutics 324 (3): 1055–1063.
68.Abels, J. et al. (1959). The physiologic mechanism of vitamin B12 absorption. Acta Medica Scandinavica 165: 105–113.
69.Kassarjian, Z. & Russell, R. (1989). Hypochlorhydria: a factor in nutrition. Annual Reviews Nutrition 9: 271–285. Review.
70.Lau, Y. & Ahmed, N. (2012). Fracture risk and bone mineral density reduction associated with proton pump inhibitors. Pharmacotherapy 32(1): 67–79.
71.Tennant, S. et al. (2008). Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infection and Immunity 76 (2): 639–645.
72.Sarzynski, E. & Puttarajappa, C. & Xie, Y. & Grover, M. & Laird-Fick, H. (2011). Association between proton pump inhibitor use and anemia: a retrospective cohort study. Digestive Diseases and Sciences 56 (8): 2349–2353.
73.Lam, J. & Schneider, J. & Zhao, W. & Corley, D. (2013). Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B12 deficiency. The Journal of The American Medical Association 310 (22): 2435–2342.
74.Theisen, J. et al. (2000). Suppression of gastric acid secretion in patients with gastroesophageal reflux disease results in gastric bacterial overgrowth and deconjugation of bile acids. Journal of Gastrointestinal Surgery 4 (1): 50–54.
75.Helander, H. & Fändriks, L. (2014). Surface area of the digestive tract – revisited. Scandinavian Journal of Gastroenterology 49 (6): 681–689.
76.Irving, M. & Catchpole, B. (1992). ABC of colorectal diseases. Anatomy and physiology of the colon, rectum, and anus. British Medical Journal 304 (6834): 1106–1108. Review.
77.Miller, T. & Wolin, M. (1996). Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and Environmental Microbiology 62 (5): 1589–1592.
78.А также ряд других биологически активных веществ, в том числе и мелатонин. – Прим. науч. ред.
79.Bollinger, R. et al. (2007). Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. Journal of Theoretical Biology 249 (4): 826–831. Review.
80.Im, G. et al. (2011). The appendix may protect against Clostridium difficile recurrence. Clinical Gastroenterology and Hepatology 9 (12): 1072–1077.
81.Vons, C. et al. (2011). Amoxicillin plus clavulanic acid versus appendicectomy for treatment of acute uncomplicated appendicitis: an open-label, non-inferiority, randomised controlled trial. The Lancet 377 (9777): 1573–1579.
82.Jussila, A. et al. (2013). High and increasing prevalence of inflammatory bowel disease in Finland with a clear North-South difference. Journal of Crohns & Colitis 7 (7): e256-262.
83.Hou, J. & Abraham, B. & El-Serag, H. (2011). Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. The American Journal of Gastroenterology 106 (4): 563-573. Review.
84.Среди исследователей нет единого мнения о значимости кишечной проницаемости для развития различных заболеваний. В настоящее время значимость синдрома leaky gut («дырявого кишечника») считается преувеличенной. – Прим. науч. ред.
85.Fasano, A. (2011). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology 42 (1): 71–78.
86.Olendzki, B. et al. (2014). An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report. Nutrition Journal 13: 5.
87.Drago, S. et al. (2006). Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scandinavian Journal of Gastroenterology 41 (4): 408–419.
88.Festen, E. et al. (2011) A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn’s disease and celiac disease. PLoS Genetics 7 (1): e1001283.
89.Herfarth, H. & Martin, C. & Sandler, R. & Kappelman, M. & Long M. D. (2014). Prevalence of a gluten-free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases. Inflammatory Bowel Diseases 20 (7): 1194–1197.
90.Hall, J. (2010). Guyton and Hall Textbook of Medical Physiology. Philadelphia: Saunders.
91.European Association for the Study of Liver. (2012). EASL clinical practical guidelines: management of alcoholic liver disease. Journal of Hepatology 57(2): 399–420.
92.Chida, Y. & Sudo, N. & Kubo, C. (2006). Does stress exacerbate liver diseases? Journal of Gastroenterology and Hepatology 21 (1 Pt 2): 202–228. Review.
93.Milic, S. & Lulic, D. & Štimac, D. (2014). Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World Journal of Gastroenterology 20 (28): 9330–9337.
94.Pandit, A. & Sachdeva, T. & Bafna, P. (2012). Drug-Induced Hepatotoxicity: A Review. Journal of Applied Pharmaceutical Science 02 (05): 233–243.
95.Pak, E. & Esrason, K. & Wu, V. (2004). Hepatotoxicity of herbal remedies: an emerging dilemma. Progress in Transplantation 14 (2): 91–96. Review.
96.Stahre, M. & Roeber, J. & Kanny, D. & Brewer, R. & Zhang, X. (2014). Contribution of excessive alcohol consumption to deaths and years of potential life lost in the United States. Preventing Chronic Diseases 11: E109.
97.Michalopoulos, G. (2007). Liver regeneration. Journal of Cellular Physiology 213 (2): 286–300. Review.
98.Grant, D. (1991). Detoxification pathways in the liver. Journal of Inherited Metabolic Disease 14 (4): 421–430. Review.
99.Ellis, H. (2011). Anatomy of the gallbladder and bile ducts. Surgery (Orford) 29 (12): 593–596.
100.Schmidt, D. et al. (2010). Regulation of bile acid synthesis by fat-soluble vitamins A and D. The Journal of Biological Chemistry 285 (19): 14486–14494.
101.Houten, S. & Watanabe, M. & Auwerx, J. (2006). Endocrine functions of bile acids. The EMBO Journal 25 (7): 1419–1425. Review.
102.Ikemoto, S. et al. (1997). Cholate inhibits high-fat diet-induced hyperglycemia and obesity with acyl-CoA synthetase mRNA decrease. American Journal of Physiology 273 (1 Pt 1): E37–45.
103.Hofmann, A. (1999). The continuing importance of bile acids in liver and intestinal disease. Archives of Internal Medicine 159 (22): 2647–2658. Review.
104.Для профилактики камнеообразования в медицине используют препараты урсодезоксихолевой кислоты. – Прим. науч. ред.
105.Walcher, T. et al. (2009). Vitamin C supplement use may protect against gallstones: an observational study on a randomly selected population. BMC Gastroenterology 9: 74.
106.Koppisetti, S. et al. (2008). Reactive oxygen species and the hypomotility of the gall bladder as targets for the treatment of gallstones with melatonin: a review. Digestive Diseases and Sciences 53 (10): 2592–2603.
107.National Institutes of Health. (2012). Human Microbiome Project defines normal bacterial makeup of the body. Bethesda: National Human Genome Research Institute. [date of reference: 26.8.2014]
108.Ley, R. & Peterson, D. & Gordon, J. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124 (4): 837–848. Review.
109.Guarner, F. & Malagelada, J. (2003). Gut flora in health and disease. The Lancet 361 (9356): 512–519. Review.
110.Sonomoto, K. & Yokota, A. (2011). Lactic Acid Bacteria and Bifidobacteria. Current Progress in Advanced Research. Norfolk: Caister Academic Press.
111.Wong, J. & de Souza, R. & Kendall, C. & Emam, A. & Jenkins, D. (2006). Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology 40 (3): 235–243. Review.
112.Guarner, F. & Malagelada, J. (2003). Gut flora in health and disease. The Lancet 361 (9356): 512–519. Review.
113.Jernberg, C. & Löfmark, S. & Edlund, C. & Jansson, J. (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156 (Pt 11): 3216–3223.
114.Beaugerie, L. & Petit, J. (2004). Microbial-gut interactions in health and disease. Antibiotic-associated diarrhoea. Best Practice and Research Clinical Gastroenterology 18 (2): 337–352. Review.
115.Thomas, C. & Stevenson, M. & Williamson, D. & Riley, T. (2002). Clostridium difficile-associated diarrhea: epidemiological data from Western Australia associated with a modified antibiotic policy. Clinical Infectious Diseases 35 (12): 1457–1462.
116.Dethlefsen, L. & Huse, S. & Sogin, M. & Relman, D. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biology 6 (11): e280.
117.World Health Organization. (2014). WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health. Geneva: WHO. [date of reference: 26.8.2014]
118.Forsythe, P. & Kunze, W. (2013). Voices from within: gut microbes and the CNS. Cellular and Molecular Life Sciences 70 (1): 55–69. Review.
119.Cryan, J. & Dinan, T. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience 13 (10): 701–712. Review.
120.Cryan, J & O’Mahony, S. (2011). The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterology and Motility 23 (3): 187–192.
121.Grenham, S. & Clarke, G. & Cryan, J. & Dinan, T. (2011). Brain-gut-microbe communication in health and disease. Frontiers in Physiology 2: 94.
122.Foster, J. & McVey Neufeld, K. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences 36 (5): 305–312. Review.
123.Roberts, R. & Farmer, C. & Walker, C. (2018). The human brain microbiome; there are bacteria in our brains!. Program No. 594.08. Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2018. Online.
124.Mayer, E. (2011). Gut feelings: the emerging biology of gut-brain communication. Nature Revies Neuroscience 12 (8): 453–466. Review.
125.Welgan, P. & Meshkinpour, H. & Beeler, M. (1988). Effect of anger on colon motor and myoelectric activity in irritable bowel syndrome. Gastroenterology 94 (5 Pt 1): 1150–1156.
126.Travagli, R. & Hermann, G. & Browning, K. & Rogers, R. (2006). Brainstem circuits regulating gastric function. Annual Review of Physiology 68: 279–305. Review.
127.Mayer, E. (2000). The neurobiology of stress and gastrointestinal disease. Gut 47: 861–869.
128.Hughes, D. & Sperandio, V. (2008). Inter-kingdom signalling: communication between bacteria and their hosts. Nature Reviews Microbiology 6: 111–120.
129.Fasano, A. (2012). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology 42 (1): 71–78.
130.Hollander, D. (1999). Intestinal permeability, leaky gut, and intestinal disorders. Current Gastroenterology Reports 1 (5): 410–416. Review.
131.Hietbrink, F. (2009). Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock 32 (4): 374–378.
132.Frazier, T. & DiBaise, J. & McClain, C. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parentereral and Enteral Nutrition 35 (5 Suppl): 14S–20S.
133.Neurath, M. (2014). Cytokines in inflammatory bowel disease. Nature Reviews Immunology 14: 329–342.
134.Aloisi, F. (2001) Immune function of microglia. Glia 36 (2): 165–179. Review.
135.Foster, J. & McVey Neufeld, K. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neuroscience 36 (5): 305–312. Review.
136.Love, B. et al. (2013). Antibiotic exposure and risk of food allergy in children. 2013 Annual Meeting of the American Academy of Allergy, Asthma and Immunology. [date of reference: 20.9.2014]
137.Vadas, P. & Wai, Y. & Burks, W. & Perelman, B. (2001). Detection of peanut allergens in breast milk of lactating women. The Journal of the Ameican Medical Association 285 (13): 1746–1748.
138.Kosecka, U. & Berin, M. & Perdue, M. (1999). Pertussis adjuvant prolongs intestinal hypersensitivity. International Archives of Allergy and Immunology 119 (3): 205–211.
139.Nakayama, T. & Aizawa, C. & Kuno-Sakai, H. (1999). A clinical analysis of gelatin allergy and determination of its causal relationship to the previous administration of gelatin-containing acellular pertussis accine combined with diphtheria and tetanus toxoids. The Journal of Allergy and Clinical Immunology 103 (2 Pt 1): 321–325.
140.O’Hagan, D. (2000). Vaccine Adjuvants. Preparation Methods and Research Protocols. Methods in Molecular Medicine. New York: Humana Press. [date of reference: 20.9.2014]
141.Jerschow, E. et al. (2012). Dichlorophenol-containing pesticides and allergies: results from the US National Health and Nutrition Examination Survey 2005–2006. Annals of Allergy Asthma and Immunology 109 (6): 420–425.
142.Ortolani, C. & Pastorello, E. (2006). Food allergies and food intolerances. Best Practice & Research. Clinical Gastroenterology 20 (3): 467–83. Review.
143.David, T. (2000). Adverse reactions and intolerance to foods. British Medical Bulletin 56 (1): 34–50.
144.Cardinale, F. et al. (2008). Intolerance to food additives: an update. Minerva Pediatrica 60 (6): 1401–1409. Review.
145.Weidenhiller, M. et al. (2012). Histamine intolerance syndrome (HIS): plethora of physiological, pathophysiological and toxic mechanisms and their differentiation. Zeitschrift für Gastroenterolie 50 (12): 1302–1309.
146.Maintz, L. & Novak, N. (2007). Histamine and histaminen intolerance. The American Journal of Clinical Nutrition 8 (5): 1185–1196.
147.David, T. (2000). Adverse reactions and intolerance to foods. British Medical Bulletin 56 (1): 34–50.
148.В США при синдроме непереносимости гистамина активно применяются пищевые добавки с диаминовой оксидазой. – Прим. науч. ред.
₺221,09
Yaş sınırı:
16+
Litres'teki yayın tarihi:
24 aralık 2019
Çeviri tarihi:
2020
Yazıldığı tarih:
2018
Hacim:
833 s. 489 illüstrasyon
ISBN:
978-5-9614-3110-0
İndirme biçimi:
epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip

Bu kitabı okuyanlar şunları da okudu